固有値計算アルゴリズムの最近の進展 II. 疎行列向け解法

2003年5月14日

山本有作

- 1. 疎行列向け固有値計算の概要
- 2. 射影法
- 3. Arnoldi法
- 4. Lanczos法
- 5. Jacobi-Davidson法

1. 疎行列向け固有値計算の概要

- 対象とする問題
- 疎行列固有値問題の特徴
- 疎行列固有値問題のための反復解法

対象とする問題

- 標準固有値問題 Ax = x
 A: 対称(エルミート)または非対称疎行列
 - Aのサイズは数万~数億次元
- 一般固有值問題 Ax = Mx
 - M: 対称疎行列
 - Mは特異の場合もあり。
 - 有限要素法 ,電子状態計算などで直交しない基底関数を用いた 場合に現れる。
- 応用分野
 - 構造解析,電子状態計算,導波路解析,文書検索など

疎行列固有値問題の特徴

- 行列サイズが巨大
 - 密行列形式で主記憶に格納することが不可能
 - 行列を変形していく Householder 法は適用不可
- ・必要な固有値・固有ベクトルは少数のみ

- 最大・最小付近の固有値を求めたい場合が多い。

反復解法の特徴

- 行列ベクトル積という形でのみ行列データを使用
- 最大・最小付近の固有値・固有ベクトルのみを効率良く計算可能

疎行列固有値計算のための反復解法

- Lanczos法 (Lanczos, 1950)
 - 対称疎行列向け
 - 行列を三重対角行列に変換
 - 精度・安定性・収束性向上のための多数の変種あり
- Arnoldi法 (Arnoldi, 1951)
 - 非対称疎行列向け
 - 行列を近似的に Hessenberg 行列に変換
 - 精度・安定性・収束性向上のための多数の変種あり
 - Jacobi-Davidson法 (Sleijpen & van der Vorst, 1996)
 - 対称/非対称疎行列向け

- 射影法の原理
- Ritz 値と Ritz ベクトル
- 射影法に基づく反復解法
- ・収束性の向上

- 基本的なアイディア
 - 部分空間への射影により,N元の大規模固有値問題 Ax = x を
 小さな固有値問題で近似
- 部分空間への射影
 - 部分空間 $S_m = span \{v_1, v_2, \dots, v_m\}$ を設定
 - ({v_i}:正規直交基底,m<<N)
 - Ax = x を満たす x S_m, を求めたいが,これは一般に不可能- 代わりに,

 $\langle \mathbf{w}, \mathbf{A}\mathbf{x} - \mathbf{x} \rangle = 0$ for $\mathbf{w} = \mathbf{S}_{m}$

(残差 Ax – xの S_m方向の成分が0)

を満たす \mathbf{x} S_m , を探す。

Ritz 値と Ritz ベクトル

小さな固有値問題への変換
 V_m = [v₁, v₂, ..., v_m], x = V_ms とおくと,

 $\langle \mathbf{w}, \mathbf{A}\mathbf{x} - \mathbf{x} \rangle = 0 \quad \text{for} \quad \mathbf{w} \quad \mathbf{S}_{m}$ $\mathbf{V}_{m}^{t} (\mathbf{A}\mathbf{V}_{m} \mathbf{s} - \mathbf{V}_{m} \mathbf{s}) = 0$ $(\mathbf{V}_{m}^{t} \mathbf{A} \mathbf{V}_{m}) \mathbf{s} = -\mathbf{s}$

- k元の固有値問題 $(V_m^t A V_m) s = s e$ 解けば, x と が求まる。 - を Ritz 値, s e Ritz ベクトルと呼ぶ。

射影法に基づく反復解法

• 部分空間の逐次的拡大

初期ベクトル v_1 を設定 $V_1 = [v_1]$ DO i = 2, m 部分空間拡大のための新しいベクトルuを求める。 $u \in V_{i-1}$ に対して正規直交化し, v_i を求める。 $V_i = [V_{i-1} | v_i]$ END DO $(V_m^t A V_m) s = s \epsilon W N \tau$, $s \epsilon x \delta a$ 。 , $x = V_m s \epsilon x \epsilon n x c n A \delta b$

- 部分空間を拡大するにつれ,解の精度は向上
- Lanczos 法, Arnoldi 法, JD 法はいずれもこの範疇に入る。

収束性の向上

• 指導原理

求めたい固有ベクトルの成分が多く含まれるように,部分空間
 S_mを選ぶ。

実現方法

(1) 良い初期ベクトルv₁を選ぶ。

- Implicit Restart Arnoldi 法
- Thick Restart Lanczos 法

(2) 部分空間拡大のためのベクトルuをうまく選ぶ。

• Jacobi-Davidson 法

11

3. Arnoldi 法

- Arnoldi 法の原理
- アルゴリズム
- 従来の Arnoldi 法の問題点
- Implicit Restart Arnoldi 法
- 一般固有値問題への適用
- 性能評価

Arnoldi 法の原理 (1)

- 部分空間の設定
 - $-\mathbf{v}_1$ は任意に選ぶ。
 - $S_m = K_m (A, v_1) = \text{span} \{v_1, Av_1, A^2v_1, \dots, A^{m-1}v_1\}$ (Krylov 部分空間)
- Krylov 部分空間を選ぶメリット
 - mを増やすに連れ,絶対値最大の固有値に対する固有ベクトルの成分が増幅される。
 - したがって,絶対値最大の固有値に対する固有ベクトルが効率
 良く近似できる。

Arnoldi 法の原理 (2)

- 正規直交基底の生成
 - 第 j ステップでは, v_j に A をかけ, v₁, v₂,..., v_j に対して直交化 することにより, 新しい基底ベクトル v_{j+1} を生成
- Arnoldi 分解
 - \mathbf{v}_{j+1} の作り方より, A \mathbf{v}_j は $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{j+1}$ の線形結合
 - したがって, $V_m = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m]$ は次の式を満たす。

$$\mathbf{AV}_{\mathrm{m}} = \mathbf{V}_{\mathrm{m}}\mathbf{H}_{\mathrm{m}} + \mathbf{h}_{\mathrm{m+1, m}}\mathbf{v}_{\mathrm{m+1}}\mathbf{e}_{\mathrm{m}}^{\mathrm{t}}$$

ただし, H_m : $m \times m$ の Hessenberg 行列 $h_{m+1,m}$: スカラー値 e_m : 第 m 成分のみが1の m 次元ベクトル

これを A の m-step Arnoldi 分解と呼ぶ。

アルゴリズム

初期ベクトル
$$v_1$$
を設定
 $v_1 := v_1 / v_1 _ 2$
 $V_0 =$
DO $j = 1$, m
 $V_j = [V_{j-1} | v_j]$
 $u = Av_j$
DO $i = 1$, j
 $h_{ij} = v_i^t u$
 $u := u - h_{ij} v_i$
END DO
 $h_{j+1, j} = u _ 2$
 $v_{j+1} = u / h_{j+1, j}$
END DO
 $H_m = (h_{ij})_{i, j = 1}^m$
 $H_m s = s を解いて , s =$
, $x = V_m s$ をそれぞれA

Aの乗算による部分空間拡大

Modified Gram-Schmidt 法に よる直交化

 $H_m = (h_{ij})_{i, j=1}^m$ $H_m s = s を解いて , s を求める。$ $, x = V_m s をそれぞれAの固有値 , 固有ベクトルとして採用$

収束判定

残差の計算 H_ms = s が成り立つとき, x = V_ms とすると

$$A\mathbf{x} - \mathbf{x} = AV_{m}\mathbf{s} - V_{m}H_{m}\mathbf{s}$$
$$= h_{m+1, m} \mathbf{v}_{m+1} \mathbf{e}_{m}^{t} \mathbf{s}$$
$$= h_{m+1, m} \mathbf{e}_{m}^{t} \mathbf{s}$$

- したがって, $E = h_{m+1, m} (\mathbf{e}_{m}^{t} \mathbf{s}) \mathbf{v}_{m+1} \mathbf{x}^{t} とおくと, \mathbf{x} と は$ (A+E) $\mathbf{x} = \mathbf{x}$

を満たす。即ち,Aに摂動Eを加えた固有値問題の解となる。

 $\mathbf{h}_{\mathrm{m+1,\,m}}$ $\mathbf{e}_{\mathrm{m}}^{\mathrm{t}}\mathbf{s}$ の大きさにより,収束判定を行う。

Arnoldi 法の問題点

第 i ステップでは, \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_i に対する直交化が必要

第 i ステップでのメモリ所要量,演算量は i に比例して増大 ステップ数 m に対し,メモリ所要量は O(m),演算量は O(m²)で増大

リスタートによるメモリ所要量・演算量削減

従来のリスタート法とその問題点

• 従来のリスタート法

- 反復回数 m に上限値を設定
- 上限値まで反復しても収束しなければ, v_mを v₁ として, 再び
 最初から Arnoldi 法を実行

• 問題点

- ベクトル $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{m-1}$ に蓄えられた情報をすべて捨ててしまう - 収束が遅くなる。

Implicit Restart Arnoldi 法 (1)

- 基本的なアイディア
 - リスタート時に v_m だけでなく,部分空間 S_m中の k本 (k < m)の ベクトルを保存する。
 - k本のベクトルは,求めたい固有値に対応する固有ベクトルの 成分が大きくなるよう, $v_1, v_2, ..., v_m$ の線形結合として選ぶ。
- メリット
 - リスタートを行っても, k本分のベクトルの情報が保存される。
 - 基底ベクトルの本数の上限が m に固定される。
 - メモリ所要量の削減
 - 直交化の演算量削減

Implicit Restart Arnoldi 法 (2)

- 実現方法
 - m-step Arnoldi 分解 $AV_m = V_m H_m + h_{m+1, m} v_{m+1} e_m^t$ が入力
 - シフトµ₁,µ₂,…,µ_{m-k}を用い,H_mに対してm-kステップのQR
 法を実行すると,次の新しい関係式を得る。

 $AV_{m}^{+} = V_{m}^{+}H_{m}^{+} + h_{m+1, m} v_{m+1} e_{m}^{t}Q$

- ただし $V_m^+ = V_m Q$, $H_m^+ = Q^t H_m Q$, $Q = Q_1 Q_2 \dots Q_{m-1}$ (QR法の直交変換の行列)
- 両辺の第 k 列目までを取ると,次の新しい k-step Arnoldi 分解が 得られる。

 $AV_{k}^{+} = V_{k}^{+}H_{k}^{+} + h_{k+1,k} v_{k+1}^{+} e_{k}^{t}$

 この状態から再度 Arnoldi 法を始めることにより, k本のベクトル を保存してリスタートすることが可能

Implicit Restart Arnoldi 法(3)

Implicit Restart Arnoldi 法 (4)

 シフトと初期ベクトルの関係 - QR法におけるシフトを $\mu_1, \mu_2, ..., \mu_{m-k}$ とすると, $QR = (H_m^+ - \mu_1) (H_m^+ - \mu_2) \dots (H_m^+ - \mu_{m-k})$ ただし, $R = R_{m-k} \dots R_2 R_1$ ($R_i \downarrow QR 法 で 現れる 上 三 角 行 列$) - したがって, V_m^+ の第1列を v_1^+ とすると, $v_1^+ = V_m Q e_1$ $= V_m (H_m^+ - \mu_1) (H_m^+ - \mu_2) \dots (H_m^+ - \mu_{m-k}) R^{-1} e_1$ $= r_{11}^{-1} (A - \mu_1) (A - \mu_2) \dots (A - \mu_{m-k}) \mathbf{v}_1$ したがって, implicit restart を行うことは, 初期ベクトルを \mathbf{v}_1 (A- μ_1) (A- μ_2) ... (A- μ_{m-k}) \mathbf{v}_1 と変えたことと等価となる。

Implicit Restart Arnoldi 法 (5)

- シフトの選び方
 - µをシフトとして選ぶと,初期ベクトルv₁のうち,µに近い固有値 に対応する固有ベクトル成分が小さくなる。
 - したがって、シフトは、必要でない固有ベクトルの固有値に近い 値に選ぶ。

アルゴリズム

Arnoldi 分解
$$AV_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^t を入力_b$$

DO $l = 1, 2, 3, ...$
シフト $\mu_1, \mu_2, ..., \mu_{m-k}$ を用い, H_m に対して m-k ステップのQR法を実行
 $Q = Q_1 Q_2 ... Q_{m-1}$
 $V_m^+ = V_m Q$, $H_m^+ = Q^t H_m Q$
 $_k = (H_m^+)_{k+1,k}$, $_k = Q_{m,k}$
 $v_{k+1}^+ = v_{k+1} + h_{m+1,m} v_{m+1} - k$
 $h_{k+1,k} = v_{k+1}^+ 2$
 $v_{k+1}^+ := v_{k+1}^+ / h_{k+1,k}$
 $V_m^+ O$ 最初の第 k 列からなる行列を $V_k^+ と ta_b$
 $H_m^+ O \pm L 部分からなる k × k 行列を H_k^+ と ta_b$
Arnoldi 分解 $AV_k^+ = V_k^+ H_k^+ + h_{k+1,k} v_{k+1}^+ e_k^t$ から始めて, Arnoldi法を
 $m - k$ ステップ行う。
END DO

一般固有値問題への適用(1)

- 対象とする問題
 - $-A\mathbf{x} = M\mathbf{x}$
 - Mは一般に対称疎行列
 - M は特異の場合もあり。
 - 解法I:標準固有値問題に直す方法
 - M = LL^tと Cholesky 分解を行い, (L⁻¹AL^{-t})(L^tx) = (L^tx) を解く。 - 問題点
 - fill-in により, Lの非零要素数が M に比べて大きく増加
 - M が特異の場合に対応不可

一般固有値問題への適用(2)

解法 II: スペクトル変換を使う方法
 – 同値変形

Ax =
 Mx

$$(A - M) x = (-) Mx$$
 $(A - M)^{-1}M x = x$

 ただし
 $= 1 / (-)$

により,標準固有値問題に変換

- 利点
 - の調節により, 内部固有値も効率よく求められる。
 - M が特異であっても対応可能

- 問題点

(A – M)⁻¹ による乗算が必要

一般固有値問題への適用(3)

- 解法 III: M-内積に基づく方法
 - Arnoldi 法において, 内積 v^t u, ノルム u 2 をすべて, M-内積 v^t Mu, M-ノルム u^t Mu に置き換える。

Ax= Mxを満たし,M-直交性を持つ固有ベクトルが得られる。

- 解法 II と組み合わせて使うことも可能

- 評価環境 *SR8000(F1)*
- ・評価例題 光導波路の ベクトル波モード解析
 ・評価対象の手法 *Arnoldi vs. IRAM*

収束に必要な演算量

収束状況

(ARPACK)

12µm

 $\nabla^{2} \mathbf{E}(\mathbf{r}) + k_{0}^{2} \boldsymbol{e}_{r} \mathbf{E}(\mathbf{r}) = -\nabla \left[\nabla \log(\boldsymbol{e}_{r}) \cdot \mathbf{E}(\mathbf{r}) \right]$ $\mathbf{E}(\mathbf{r}) = \begin{bmatrix} E_{x} \\ E_{y} \end{bmatrix} \exp(-i\boldsymbol{b}z)$

連立非対称固有値問題

28

性能評価 () ~ Arnoldi法

29

性能評価 () ~ Arnoldi法 収束性(1)

n=51482の収束状況
 最大固有値⁰の収束は同等, ⁰₃₀は*IRAM*が有効

性能評価 () ~Arnoldi法

N=51482の収束状況 固有値⁹100はIRAMは収束, Arnoldiは未収束

4. Lanczos 法

- Lanczos 法の原理
- アルゴリズム
- 収束定理
- 従来のLanczos 法の問題点
- ブロック化 Lanczos 法
- Thick Restart Lanczos 法
- 性能評価

Lanczos 法の原理(1)

- 部分空間の設定
 - Arnoldi 法と同様, S_mとしてKrylov 部分空間を使用
 - $\mathbf{S}_{\mathrm{m}} = K_{\mathrm{m}} (\mathbf{A}, \mathbf{v}_{1}) = \operatorname{span} \{\mathbf{v}_{1}, \mathbf{A}\mathbf{v}_{1}, \mathbf{A}^{2}\mathbf{v}_{1}, \dots, \mathbf{A}^{\mathrm{m-1}}\mathbf{v}_{1}\}$
- 正規直交基底の生成
 - 第 j ステップでは, v_j にAをかけ, v_1, v_2, \dots, v_j に対して直交化 することにより, 新しい基底ベクトル v_{j+1} を生成
 - j < m 1 のとき

$$(\mathbf{A}\mathbf{v}_{m})^{t} \mathbf{v}_{j} = \mathbf{v}_{m}^{t} (\mathbf{A}\mathbf{v}_{j})$$

= $\mathbf{v}_{m}^{t} {}_{i=1}^{j+1} \mathbf{c}_{i} \mathbf{v}_{i}$
= ${}_{i=1}^{j+1} \mathbf{c}_{i} \mathbf{v}_{m}^{t} \mathbf{v}_{i} = 0$

- したがって,新たに生成したベクトルA v_m は v_{m-1} , v_m のみに 対して直交化すればよい

Lanczos 法の原理(2)

- Lanczos 分解
 - Lanczos 法は Arnoldi 法の対称行列への適用であるから,次の Arnoldi 分解の式が成り立つ。

$$\mathbf{AV}_{\mathrm{m}} = \mathbf{V}_{\mathrm{m}}\mathbf{H}_{\mathrm{m}} + \mathbf{v}_{\mathrm{m}+1} \mathbf{e}_{\mathrm{m}}^{\mathrm{t}}$$

- ここで,両辺に左から V_m ^tをかけると,基底ベクトルの直交性より V_m ^tAV_m = H_m。左辺は対称行列であるから, H_mは Hessenberg かつ対称行列で,すなわち三重対角行列 T_m となる。したがって

$$\mathbf{AV}_{\mathrm{m}} = \mathbf{V}_{\mathrm{m}}\mathbf{T}_{\mathrm{m}} + \mathbf{v}_{\mathrm{m}+1} \mathbf{e}_{\mathrm{m}}^{\mathrm{t}}$$

これを A の m-step Lanczos 分解と呼ぶ

収束判定

残差の計算 T_ms = s が成り立つとき, x = V_ms とすると

$$A\mathbf{x} - \mathbf{x} = AV_{m}\mathbf{s} - V_{m}T_{m}\mathbf{s}$$
$$= \mathbf{v}_{m+1}\mathbf{v}_{m+1}\mathbf{e}_{m}^{t}\mathbf{s}$$
$$= \mathbf{e}_{m+1}\mathbf{e}_{m}^{t}\mathbf{s}$$

- したがって, $E = \prod_{m+1} (e_m^{t} s) v_{m+1} x^{t} とおくと, x と は (A + E) x = x$

を満たす。即ち,Aに摂動 Eを加えた固有値問題の解となる。 このとき, $| - _i | < E_2$ を満たすAの固有値 $_i$ が存在する。

 \mathbf{e}_{m+1} \mathbf{e}_{m} s の大きさにより, 収束判定を行う

収束定理

対称行列Aの固有値を $_1 > _2 > ... > _N$ とし,初期ベクトル v_1 が固有ベクトル $\{x_i\}_{i=1}^N$ を用いて

$$\mathbf{v}_1 = \sum_{i=1}^{N} \mathbf{c}_i \mathbf{x}_i$$

と展開されるとする。

このとき, m ステップの Lanczos 法で求めた $_1$ の近似値を $_1^{(m)}$ とすると,

ただし, = (1 - 2)/(1 - N)。

Lanczos 法の問題点 I: 再直交化

• 再直交化の必要性

- 数学的には、Av_iはv_{i-1}、v_iのみに対して直交化すればよい。
- しかし有限精度での計算では,丸め誤差の影響により, v_{j-2} 以前 のベクトルとの直交性も崩れる場合がある。

精度を保つため,再直交化が必要

計算量が増大し, Lanczos 法のメリットが減少

再直交化のための従来手法

- Selective orthogonalization (Parlett & Scott, 1979)
 - 直交性の崩れは, 主に収束しつつある Ritz ベクトルの方向に対して起きる。
 - 新たに求めたベクトル Av_jを, この Ritz ベクトルのみに対して再 直交化
- Partial orthogonalization (Simon, 1984)

 直交性の崩れ
 _{ij} = v_i^tv_jの満たす方程式を求める。
 _{ij}が大きくなったときに限り,再直交化を行う

Lanczos 法の問題点II: 縮重固有値のある場合

縮重固有値のある場合の Krylov 部分空間の拡大
 $\mathbf{v}_1 = \prod_{i=1}^{N} c_i \mathbf{x}_i$ とすると, $A^{j-1} \mathbf{v}_1 = \prod_{i=1}^{N} \prod_i^{j-1} c_i \mathbf{x}_i$ もし $i_i = \prod_i^{N} c_i c_i \mathbf{x}_i$ の係数の比は常に $c_i : c_i$

mを増やしても,この縮重固有値に対する部分空間は,常に1次元のままで拡大されない。

縮重度分の固有ベクトルが正しく求まらない可能性あり

ブロック化 Lanczos 法

- 原理 (Cullum and Donath, 1974)
 p×pの小行列を1つの要素と見て Lanczos 法を実行
 - 出力はブロック三重対角行列

長所

- 縮重度が p までの縮重固有値・固有ベクトルが正しく計算可能 (Underwood, 1975)
- 計算が行列乗算を用いて行われるため,キャッシュマシンで高い 性能を出すことが可能

ブロック化 Lanczos 法のアルゴリズム

Thick Restart Lanczos 法(1)

- 基本的なアイディア
 - Lanczos 法のステップ数に上限値 m を設ける。
 - 第mステップではm本のRitzベクトルを計算し,そのうちk本 (k<m)を選んで初期ベクトルとし,Lanczos法をリスタートする。
- メリット
 - リスタートを行っても, k本分のベクトルの情報が保存される。
 - 基底ベクトルの本数の上限が m に固定される。
 - メモリ所要量の削減
 - 直交化の演算量削減

Thick Restart Lanczos 法(2)

• 実現方法

- m-step Lanczos 分解 $AV_m = V_m T_m + \dots v_{m+1} e_m^t \check{v} \Lambda D$ - T_mの k 本の固有ベクトルを並べた行列を Yとすると,

 $AV_{m}Y = V_{m}T_{m}Y + \mathbf{v}_{m}\mathbf{v}_{m+1}\mathbf{e}_{m}^{t}Y$ $AV_{m}Y = V_{m}YT_{k}^{+} + \mathbf{v}_{m}\mathbf{v}_{m+1}\mathbf{e}_{m}^{t}Y$ $AV_{k}^{+} = V_{k}^{+}T_{k}^{+} + \mathbf{v}_{m}\mathbf{v}_{k+1}^{+}\mathbf{s}^{t} \qquad \cdots \qquad (*)$

ただし $V_m^+ = V_m Y$, $s = Y^t e_m$, T_m^+ : Yに対応する固有値を並べた k × k の対角行列

 (*) 式は k-step Lanczos 分解と類似の形を持つ。
 (右辺第2項に現れるベクトルが e^{nt} でない点が異なる。)
 (*) 式を起点とし, Lanczos 法と同様に v_{k+2}, v_{k+3}, ... を計算して いくことで, k本のベクトルを保存してリスタートすることが可能

Thick Restart Lanczos 法(3)

- \mathbf{v}_{k+2} の計算 - $A\mathbf{v}_{k+1} & \mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{k+1}$ に対して直交化 - 以下,右肩の * を省いて書くと $\mathbf{v}_{k+1}\mathbf{v}_{k+2} = (\mathbf{I} - \mathbf{V}_{k+1}\mathbf{V}_{k+1}^{t}) A\mathbf{v}_{k+1}$ $= (\mathbf{I} - \mathbf{v}_{k+1}\mathbf{v}_{k+1}^{t} - \mathbf{V}_{k}\mathbf{V}_{k}^{t}) A\mathbf{v}_{k+1}$ $= (\mathbf{I} - \mathbf{v}_{k+1}\mathbf{v}_{k+1}^{t}) A\mathbf{v}_{k+1} - \mathbf{V}_{k-m}\mathbf{s}$ - ここで、前ページの(*)式と基底の直交性よ!
 - ここで,前ページの(*)式と基底の直交性より $V_k A \mathbf{v}_{k+1} = m \mathbf{s}$ - であることを用いた。

Thick Restart Lanczos 法(4)

v_{k+i+1} (i 2)の計算
 Av_{k+i} を v₁, v₂, ..., v_{k+i} に対して直交化

$$\begin{aligned} \mathbf{v}_{k+i} \mathbf{v}_{k+i+1} &= (\mathbf{I} - \mathbf{V}_{k+i} \mathbf{V}_{k+i}^{t}) \mathbf{A} \mathbf{v}_{k+i} \\ &= (\mathbf{I} - \mathbf{v}_{k+i-1} \ \mathbf{v}_{k+i-1}^{t} - \mathbf{v}_{k+i} \ \mathbf{v}_{k+i}^{t} - \mathbf{V}_{k+i-2} \ \mathbf{V}_{k+i-2}^{t}) \mathbf{A} \mathbf{v}_{k+i} \\ &= (\mathbf{I} - \mathbf{v}_{k+i-1} \ \mathbf{v}_{k+i-1}^{t} - \mathbf{v}_{k+i} \ \mathbf{v}_{k+i}^{t}) \mathbf{A} \mathbf{v}_{k+i} - \mathbf{V}_{k+i-2} (\mathbf{A} \mathbf{V}_{k+i-2})^{t} \mathbf{v}_{k+i} \\ &= (\mathbf{I} - \mathbf{v}_{k+i-1} \ \mathbf{v}_{k+i-1}^{t} - \mathbf{v}_{k+i} \ \mathbf{v}_{k+i}^{t}) \mathbf{A} \mathbf{v}_{k+i} \end{aligned}$$

- ここで, AV_{k+i-2} は $v_1, v_2, ..., v_{k+i-1}$ の線形結合であり, v_{k+i} に直 交することを用いた。

- 上式より, A \mathbf{v}_{k+i} は \mathbf{v}_{k+i-1} , \mathbf{v}_{k+i} のみに対して直交化すればよい。

- したがって,リスタート後の各ステップの演算量は,通常の Lanczos 法の演算量と等しい。

Thick Restart Lanczos 法(5)

Thick Restart Lanczos 法により得られる分解
 j k+1 のとき,次の式が成り立つ。

 $\mathbf{A}\mathbf{V}_{j} = \mathbf{V}_{j}\mathbf{T}_{j} + \mathbf{v}_{j+1}\,\mathbf{e}_{j}^{t}$

- ただし, T_j は右図の形の j × j 行列である

- 上式は T_i の非零構造を除いては k-step Lanczos 分解と同じ。
- 第mステップにおいてT_mの固有値・固有ベクトルを求めること
 により,再び(*)の形の式を構成でき,再リスタートが可能

性能評価()~Lanczos法

評価環境 EP8000 /690Turbo (Power4 1.3GHz) • 評価例題 Matrix Market (Harwell-Boeing) 評価対象の手法 Lanczos vs. TR-Lanczos 収束に必要な、クトル本数 演算量・計算時間 収束状況(bcsstk21,bcsstk39)

Matrix	n	nz,	Gap
bcsstk16	4884	147631	0.58
bcsstk17	10974	219812	0.88
bcsstk18	11984	80519	0.73
bcsstk21	3600	15100	0.13
bcsstk23	3134	24156	0.98
bcsstk24	3562	81736	1.00
bcsstk25	15439	133840	1.00
bcsstk35	30237	740200	0.99
bcsstk36	23052	583096	0.82
bcsstk37	25503	583240	0.60
bcsstk39	46772	1068034	0.34
crystk02	13965	491274	0.99

密集度 $Gap = (\boldsymbol{l}_1 - \boldsymbol{l}_{100})/\boldsymbol{l}_1$

性能評価()~Lanczos法

- 収束判定基準
- 所望固有值個数
- 結果

 Ax – x
 /| |<10⁻¹⁰

 NE=30,100

 TR:所要ベクトル本数少なレ い

 密集に対しても安定。

49

収束に必要なベクトル本数の比較

性能評価()~Lanczos法

演算量は同等だが,計算時間はTRが高速(EP8000) キャッシュマシン向き

性能評価() ~ Lanczos法 収束性(1)

51

- 密集固有値がない場合: bcsstk39
- 最大固有値から28,29,30個の固有値: 収束性は同等

性能評価() ~ Lanczos法 収束性(2)

- 密集固有値がある場合: bcsstk21
- TR-Lanczosは密集固有値に有効

5. Jacobi-Davidson 法

- Jacobi-Davidson 法を考える動機
- Jacobi-Davidson 法の原理
- アルゴリズム
- ・リスタート
- デフレーション
- 性能評価

Jacobi-Davidson 法を考える動機

- Lanczos 法 / Arnoldi 法で解きにくい問題
 - スペクトルの端にある固有値で,かつ他の固有値からの分離が 良い場合は解きやすい。
 - それ以外の場合, 効率的に計算を行うには, スペクトル変換などの技法が必要
 - しかし, (A M)⁻¹による乗算は, コストが掛かる場合が多い。

スペクトル変換を用いずに,内部固有値/分離の悪い固有値を 効率的に求められる解法が必要

Jacobi-Davidson 法の原理 (1)

- 修正ベクトルと部分空間の拡張
 - 部分空間 S_m と正規直交基底 { $v_1, v_2, ..., v_m$ } とが与えられているとする。 $V_m = [v_1, v_2, ..., v_m]$ とし、 S_m に関する A の Ritz 値, Ritz ベクトルの組を ($_i, u_i = V_m s_i$) (j = 1, ..., m) とする。
 - いま,求めたい固有値 に対する近似固有ベクトルとして u_jを 選び, u_jを正しい固有ベクトルにするための修正ベクトルをtと 書くと,

A (
$$\mathbf{u}_{j} + \mathbf{t}$$
) = ($\mathbf{u}_{j} + \mathbf{t}$)
すなわち,(A - I) $\mathbf{t} = -(A - I) \mathbf{u}_{j}$

Jacobi-Davidson 法 では、ベクトル u_jの直交補空間の中で t を求め、これによって S_mを拡張する。

Jacobi-Davidson 法の原理 (2)

• 修正方程式

 - (A – I)の作用をu_j に制限した演算子は (I – u_j u_j^t)(A – I)(I – u_j u_j^t) だから,tを求めるための方程式は

 $(I - u_j u_j^t)(A - I)(I - u_j u_j^t) t = -(A - I) u_j$

となる。さらに, は未知だから _iで置き換えると,

$$(\mathbf{I} - \mathbf{u}_{j}\mathbf{u}_{j}^{t})(\mathbf{A} - \mathbf{j}\mathbf{I})(\mathbf{I} - \mathbf{u}_{j}\mathbf{u}_{j}^{t})\mathbf{t} = -(\mathbf{A} - \mathbf{j}\mathbf{I})\mathbf{u}_{j}$$

これを修正方程式と呼ぶ。

- JD法では , t を求めた後 , これを {v₁, v₂, ... , v_m } に対して正規 _ 直交化して v_{m+1} を求め , 部分空間を拡大していく。

Jacobi-Davidson 法の原理 (3)

- 修正方程式の解法
 - 修正方程式の係数行列は u_j への制限のため特異であるが,
 右辺も u_j に属する。したがって方程式は無矛盾
 - 初期値 t₀ = 0 から出発し,GMRES法,CGS法などの Krylov 部 分空間法を用いて解けば,自動的に u_i に属する解が得られる。
 - – 経験上, 厳密解を求める必要はなく, GMRES法の5ステップ分 程度の精度で十分
 - 前処理を行う場合は前処理行列 K も部分空間 u_j に制限する
 必要がある。

アルゴリズム

初期ベクトル
$$t = v_0$$
を設定
DO $m = 1, 2, ...$
DO $i = 1, 2, ..., m-1$
 $t := t - (t^i v_i) v_i$ Modified Gram-Schmidt 法
END DO
 $v_m = t/t_2, v_m^A = Av_m$
DO $i = 1, 2, ..., m$
 $M_{i,m} = v_i^t v_m^A$
END DO
 $m \times m$ 行列 Mの最大固有值 ,固有ベクトルsを求める。
 $u = Vs$ ($V = [v_1, v_2, ..., v_m]$)
 $u^A = V^A s$ ($V = [v_1, v_2, ..., v_m]$)
 $r = u^A - u$
 r_2 なら = , $x = u \ge U$ て停止
 $(I - uu^t)(A - I)(I - uu^t) t = -r$ を解いて t を求める。
END DO

リスタート

• 必要性

1ステップ当たりのメモリ所要量・演算量を一定値に抑えるため、
 JD法でもリスタートを行う。

- 実現方法
 - JD法では,部分空間 S_mが Krylov 部分空間の構造を持つ必要 がないため,リスタートは容易
 - Ritz ベクトルのうち,求めたい固有値に近い Ritz 値を持つベクト ルを複数本選び,部分空間の次元を削減して計算を続行すれば よい。

デフレーション

- 必要性
 - 複数の固有値・固有ベクトルを求める場合,収束した固有ベクト ルを基底から取り除いてリスタートすると,計算が効率化できる。
 - この操作をデフレーションと呼ぶ。
- 実現方法
 - 収束した固有ベクトル $\mathbf{x}_1, \ldots, \mathbf{x}_l$ を基底から取り除く
 - アルゴリズムにおいて, A Iを

 $(\mathbf{I} - \mathbf{X}_l \mathbf{X}_l^{t})(\mathbf{A} - \mathbf{I})(\mathbf{I} - \mathbf{X}_l \mathbf{X}_l^{t})$ ただし $\mathbf{X}_l = [\mathbf{x}_1, \dots, \mathbf{x}_l]$

で置き換える。

- これにより,計算はすべてX₁の中で行える。

60

- 性能評価 ~ JD 法 対称・収束特性 • テスト行列 N=1000, A_{ii}=i, A_{i-1,i}=0.5, A_{1000,1}=0.5 • 収束判定 Ax - x < 10⁻⁸
 - Arnoldi

JD with GMRES(5)

Iteration number

Iteration number

cf) Sleijpen, Jacobi-Davidson algorithms for various eigenproblems(1999),p.15 Fig.4-1

疎行列固有値計算全般

- Z. Bai, J. Demmel, J. Dongarra, A.Ruhe and H. Van der Vorst (eds.): "Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide", SIAM, Philadelphia, 2000.
- F. Chatlin: "Valeurs Propres de Matrices", Masson, Paris, 1988. (W. Ledermann "Eigenvalues of Matrices", John-Wiley and Sons, Chichester, 1993.)
- J. W. Demmel: "Numerical Linear Algebra", SIAM, Philadelphia, 1996.
- G. H. Golub and C. F. van Loan: "Matrix Computations", 3rd edition, The Johns Hopkins University Press, 1989.
- B. N. Parlett: "The Symmetric Eigenvalue Problem", Prentice-Hall, Englewood Cliffs, 1980.
- Y. Saad: "Numerical Methods for Large Eigenvalue Problems", Halsted Press, New York, 1992.
- J. H. Wilkinson: "The Algebraic Eigenvalue Problem", Claredon Press, Oxford, 1965.

参考文献(2/5)

Lanczos法(1)

- J. Cullum and W. E. Donath: "A Block Lanczos Algorithm for Computing the q Algebraically Largest Eigenvalues and a Corresponding Eigenspace of Large Sparse Real Symmetric Matrices", Proc. of the 1974 IEEE Conference on Decision and Control, Phoenix, Arizona, pp. 505-509 (1974).
- J. Cullum and R. A. Willoughby: "Lanczos Algorithms for Large Symmetric Eigenvalue Computations", Volume 1, Theory, Birkhauser, Boston, 1985.
- R. G. Grimes, J. G. Lewis and H. D. Simon: "A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems", SIAM Journal on Matrix Analysis and Applications, Vol. 15, No. 1, pp. 228-272 (1994).
- C. Lanczos: "An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators", J. Research of the National Bureau of Standards, Vol. 45, No. 4, pp. 255-282 (1950).
- 森正武, 杉原正顕, 室田一雄: "線形計算", 岩波書店, 1994.

参考文献(3/5)

Lanczos法(2)

- B. N. Parlett and D. Scott: "The Lanczos Algorithm with Selective Orthogonalization", Mathematics of Computation, Vol. 33, pp. 217-238 (1979).
- H. D. Simon: "The Lanczos Algorithm with Partial Reorthogonalization", Mathematics of Computation, Vol. 42, pp. 115-136 (1984).
- R. Underwood: "An Iterative Block Lanczos Method for the Solution of Large Sparse Symmetric Eigenproblems", Report STAN-CS-75-495, Department of Computer Science, Stanford University, Stanford, California (1975).
- K. Wu and H. Simon: "Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems", SIAM Journal on Matrix Analysis and Applications, Vol. 22, No. 2, pp. 602-616 (2000).

参考文献(4/5)

Arnoldi法

- W. E. Arnoldi: "The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem", Quart. J. Applied Mathematics, Vol. 9, pp. 17-29 (1951).
- R. B. Lehoucq and D. C. Sorensen: "Deflation Techniques for an Implicitly Restarted Arnoldi Iteration", SIAM Journal on Matrix Analysis and Applications, Vol. 17, No. 4, pp. 789-821 (1996).
- R. B. Lehoucq, K.J. Maschhoff.: "implementation of an implicitly restarted block Arnoldi method", Preprint MCS-P649-0297, Argonne National Laboratory, IL, 1997.
- R. B. Lehoucq, D. C. Sorensen and C. Yang: "ARPACK User's Guide", SIAM, Philadelphia, 1998.
- D. C. Sorensen: "Implicit Application of Polynomial Filters in a k-Step Arnoldi Method", SIAM Journal on Matrix Analysis and Applications, Vol. 13, No. 1, pp. 357-385 (1992).

Jacobi-Davidson法

- D. R. Fokkema, G. L. G. Sleijpen and H. A. van der Vorst: "Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils", SIAM Journal on Scientific Computing, Vol. 20, pp. 94-125 (1999).
- M.Genseberger, G. L. G. Sleijpen: "Alternative correction equations in the Jacobi-Davidson method", Preprint No. 1073,1999.
- M. Nool and A. van der Ploeg: "A Parallel Jacobi-Davidson-Type Method for Solving Large Generalized Eigenvalue Problems in Magnetohydrodynamics", SIAM Journal on Scientific Computing, Vol. 22, No. 1, pp. 95-112 (2000).
- Y. Saad and M. H. Schultz: "GMRES: A Generalized Minimum Residual Algorithm for Solving Nonsymmetric Linear Systems", SIAM Journal on Scientific and Statistical Computing, Vol. 7, pp. 856-869 (1986).
- G. L. G. Sleijpen and H. A. van der Vorst: "A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems", SIAM Journal on Matrix Analysis and Applications, Vol. 17, pp. 401-425 (1996).
- G. L.G. Sleijpen, H. A. Van der Vorst, Z. Bai : "Jacobi-Davidson algorithms for various Eigenproblems A working document-", Preprint nr.1114 ,1999.