Equality Conditions for Lower Bounds on the
Smallest Singular Value of a Bidiagonal
Matrix

Yusaku Yamamoto

Nagoya University, Nagoya, Aichi, 464-8603, Japan

Abstract

Several lower bounds have been proposed for the smallest singular value of a square
matrix, such as Johnson’s bound, Brauer-type bound, Li’s bound and Ostrowski-
type bound. In this paper, we focus on a bidiagonal matrix and investigate the
equality conditions for these bounds. We show that the former three bounds give
strictly lower bounds if all the bidiagonal elements are nonzero. For the Ostrowski-
type bound, we give an easily verifiable necessary and sufficient condition for the
equality to hold.
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1 Introduction

The singular values are fundamental quantities that describe the properties of
a given matrix. In particular, the smallest singular value plays a special role in
numerical linear algebra and several lower bounds for estimating it from below
have been proposed so far. Examples of the lower bounds include Johnson’s
bound, Ostrowski-type bound, Brauer-type bound and Li’s bound.

In a certain situation, we are interested to know whether equality holds in
these lower bounds. For example, lower bounds can be used to determine the
shifts in the dqds or related algorithms for singular value computation. In that
case, to guarantee global convergence and numerical stability, we must make
sure that the bound is strictly smaller than the smallest singular value.
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In this paper, we focus on a bidiagobnal matrix and study the equality condi-
tions for the four lower bounds listed above. We show that if all the diagonal
and upper subdiagonal elements of the bidiagonal matrix are nonzero, John-
son’s bound, Brauer-type bound and Li’s bound all give strict lower bounds.
The restriction here is not serious since any bidiagonal matrix can be trans-
formed easily to satisty it. For Ostrowski-type bound, we give a necessary and
sufficient condition for equality to hold.

In section 2, we review the four lower bounds for the smallest singular value.
In section 3, we give two theorems concerning the equality conditions for
these bounds. Section 4 gives an example of a bidiagonal matrix for which the
Ostrowski-type bound gives the exact smallest singular value.

2 Lower bounds on the smallest singular value

We consider an n by n upper bidiagonal matrix B given by
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" _bn—l n

)

bTLTL

and denote its smallest singular value by o, (B). Following [2], we assume that
B has Property (A) defined below:

Definition 2.1. An upper bidiagonal matriz B is said to have Property (A)
iof all the diagonal elements are positive and all the upper subdiagonal elements
of are negative, i.e., b; >0 (i=1,...,n) and b;;41 >0 (i=1,....,n—1).

If B has Property (A), the right and left singular vectors corresponding to
o.(B) can be chosen positive since they are the eigenvectors of positive matri-
ces (BTB)™! and (BBT)™!, respectively, corresponding to the largest eigen-
value (0, (B)) 2

We can show that our assumption is not restrictive as follows. If one of the
subdiagonal elements of B is zero, B is decomposed into a direct sum of two
upper diagonal matrices. So we can compute the lower bounds for each ma-
trix separately. If a diagonal element of B is zero, by applying one step of the
dqds algorithm with zero shift, we can chase the zero element to the lower-
right corner. By deflating the element, we obtain a smaller bidiagonal matrix



with nonzero diagonals [2]. Finally, the diagonal elements and upper subdiag-
onal elements can be made positive and negative, respectively, by multiplying
appropriate diagonal matrices with diagonal elements +£1 from both sides.

Now we can state the four lower bounds that we will deal with in this paper.
In the following, we adopt the convention that by; = by, ,4+1 = 0.

Theorem 2.2. Johnson bound[6]:

. 1
Un(B) > min {bkk - = (bk—l,k + bk,k+1)} . (2)

— 1<k<n 2

Theorem 2.3. Brauer-type bound|[7]:

. 1
on(B) 2 1<) ksn 5{ e+ by

_\/<bkkz —0;)* + (b1 + brgerr) (bj1j + bju’ﬂ)}- (3)

Theorem 2.4. Li’s bound[S]:

. 1
on(B) > 1§Ikn§1713—1 5{ Kk Oky1,k1

_\/(bkk — bk+1,k+1)2 + (br— 1k + brpr1) (k1 + |bk+17k+2|)}- (4)

Theorem 2.5. Ostrowski-type bound[7]:

. 1 1
on(B) > min {\/bzk + — (k11 — bk7k+1)2 = (br_14 + bk7k+1)} . (5)

— 1<k<n 4

It can be shown that Li’s bound is stronger than the Brauer-type bound,
which in turn is stronger than Johnson’s bound [7]. Also, Ostrowski’s bound
is stronger than the Johnson bound [7]. Brauer-type bound and Ostrowski-
type bound are mtually noncomparable. Also, Li’s bound and Ostrowski-type
bound are mutually noncomparable.

3 Equality conditions for the lower bounds

We first study equality conditions in Johnson bound, Brauer-type bound and
Li’s bound. To this end, we show the following theorem. This theorem is stated
in [4], p. 151, but here we restrict ourselves to a bidiagonal matrix and give a
sufficient condition for the strict inequality to hold.



Lemma 3.1. Let B be an n by n upper bidiagonal matriz. Also, for an n by
n symmetric matriz A, denote its smallest eigenvalue by A\, (A). Then

0u(B) > A (% (B+ BT)> . (6)

Moreover, the strict inequality holds if B has Property (A).

Proof. Let A = \, (%(B + BT)) and o = 0,(B) and denote the normalized
right and left singular vectors of B corresponding to o by x and y, respectively.
Then,

(BT —\I)(B = X)=BTB - \B+ BT)+ \I = O. (7)

Here, A = B means that the matrix A— B is positive semidefinite and O means
the zero matrix. By multiplying x*" and x from both sides we have

0’ =x"B"Bx > \x"(B+ BT)x — \>x"x > 2)\? — \? = \2. (8)

Since o > 0, it follows that o > |A| > A

Next, we consider the case where by, by, ..., by, 1 are all nonzero and A > 0
and show o > A by contradiction. Assume o = A. Then, since the second
inequality in (8) must be equality, we have

Ax G(B n BT)> x = A2, (9)

Noting that B is nonsingular and o = X\ # 0, we get

X G(B + BT)> X = A (10)

Since A is the smallest eigenvalue of (B + BY), Eq. (10) means that x is an
eigenvector of (B + B”) belonging to A. Hence,

%(B + BT)x = \x. (11)

By repeating the same argument with B and x replaced by BT and y, respec-
tively, we have

%(B + BTy = \y. (12)



But, since %(B + BT) is a symmetric tridiagonal matrix whose subdiagonal el-
ements are all nonzero, all of its eigenvalues are distinct and the corresponding
eigenspaces are one-dimensional [9]. We can therefore conclude that x = yOBy
combining this with Bx = oy and o = \, we have Bx = \x. Also, BTx = \x
from BTy = ox.

Now, at least one of the diagonal elements of B must be equal to A. Let
b = A. Then, since B is a bidiagonal matrix whose subdiagonal elements

are all nonzero, we can easily show that x;,; = 20 = --- = 2z, = 0 by
comparing the components of Bx = Ax. Also, By comparing the components
of BTx = \x, we have ;_; = 14_; = --- = 11 = 0. Thus x = e; (the k-th

column of the identity matrix). However, if £ > 1, we can insert this into the
k-th component of Bx = Ax:

be—1 k—1Tk—1 + bp—1 T = Awp_1, (13)
and obtain by_;, = 0, which is a contradiction. If & = 1, from the second

component of BTx = Ax, we have bjs = 0, which also is a contradiction.
Hence o > A must hold when all the bidiagonal elements are nonzero. O

Using Lemma 3.1, we can derive the following results.

Theorem 3.2. Let B be an upper bidiagonal matriz that has Property (A).
Then strict inequality holds for the Johnson bound, Brauer-type bound and
Li’s bound.

Proof. Let A = (a);; be an n x n symmetric tridiagonal matrix and denote its
smallest eigenvalue by A,(A). Then we have from Gerschgorin’s theorem [3],

An(A) > fg}jgn lare — (Jagp—1] + |arrs1])] - (14)

Similarly, from Brauer’s theorem (Cassini’s oval) [3] we have

1
> in = g
An(A) 2 lgrjn<1£§n 2 [akk + ajj

— (ke — aj5)? + 4 (|arp ] + laesia]) (laj; 1] + lag4 )| (15)

Li showed that in the right hand side of eq. (15), we need to consider only
those j and &k which satisfy (aji,axj) # (0,0). Hence in the tridiagonal case,
we have the following (refined) inequality:



1

Ay, > min = |ape +a
n 2 0 o k4+1,k+1

—\/(akk — apprgen1)” + 4 (agpot] + larps]) (arri] + |arsesel)|-

(16)

By letting A = %(B+BT> and combining eqs. (14), (15) and (16) with
Lemma 3.1, we can derive the Johnson bound, Brauer-type bound and Li’s
bound, respectively. It is clear from Lemma 3.1 that strict inequalitiy holds if
B has Property (A). O

The situation is different for the Ostrowski-type bound. In fact, as the next
theorem states, the Ostrowski-type lower bound can reach the smallest singu-
lar value, although in a very special case.

Theorem 3.3. Let B be an upper bidiagonal matriz that has Property (A).
Denote the normalized positive right and left singular vectors of B correspond-
ing to 0,(B) by x andy, respectively. Then the following three conditions are
equivalent:

(a) Equality holds in the Ostrowski-type lower bound.

(b) In the right-hand-side of the Ostrowski-type lower bound, the argument of
the minimum gives the same positive value for all k.

(¢c) yp =241 (1< k<n—1)andy, = .

Proof. We first derive the Ostrowski-type bound itself for completeness and
then show (a) = (b), (b) = (c) and (¢) = (a) in this order.

To begin with, we note that the matrix

B —o,1
A= (17)
—o0,I BT

is singular since A[x?,y? | = 0. Then by applying Ostrowski’s theorem for

eigenvalue inclusion region [3]

1/2 1/2
Vi, 3k, |\ —age| < (Z |aik|> (Z |akj|) ; (18)

ik j£k

to A and setting \; = 0, we have

3k, b < \/bkak + Un\/bk,k+1 + oy (19)



Solving this for o, gives

1

1
3k, o, > \/b%k + 1 (be—1 — bk,k+1)2 —3 (br—1,k + brps1) (20)

from which the Ostrowski-type bound (5) follows immediately.

(a) = (b): Assume that equality holds in eq. (5). Then,

1 1
Vk, o, < \/b%k + 1 (bk—1.4 — bk,k+1)2 -5 (be—1k + bipt1) - (21)

Since all the variables are positive, this is equivalent to

Vl{?, bZk Z (bk—l,k + O'n)<bk,k_|.1 + Un). (22)

Hence we have

2
bkk

Vk, ———— > bi_ " 23
" bpgy1 + 00 bo1g O (23)
and
bk
Vk, —————— > + o, 24
bk71,k+0n kk+1 T O ( )

By multiplying eq (23) and eq (24) with 27 and 4?7, respectively, and summing
over k, we have

n b2 b2

=1 bijer1 + 0n e N
> {(brrs + 00)7} + (bipss + on)vi - (25)
k=1

On the other hand, from the k-th component of Bx = 0,y, we have

bek®r = OpYk + Ok k1 Th41

=\/0pn -\ OnYi + \/bk,k+1 ' \/bk,kﬂxkﬂ
< \/Un + bk7k+1\/0ny]% + b k1 %541 - (26)




Here, we used Schwarz’s inequality in the second inequality. Squaring both
sides of eq. (26) gives

b 2 2
— <o,y +b 2. 27
brger + On E > Onlyg kk+1Lg 11 ( )
Similarly,
b 2 2 2
_ . < og,xi + b . 28
b1 £ o Y < 0ng + b 11Y51 (28)

Summing eqs. (27) and (28) over all k, we have (noting that by = b, .11 = 0)

2 bk 2 bk 2
Y + [ L A y
kzzjl {bk,k—i-l +o, P bpoig o k}

<> {(bk—l,k + o) 2g + (O + Un)y/%} : (29)
k=1

But eq. (25) shows that the opposite inequality holds. Thus the inequality in
(25) and (29) must be equality. It then follows that equality in eqgs. (23) and
(24) must hold for all £ (note that z; > 0 and y; > 0 for all k). Tracing back
further, we know that equality holds for all & in eq. (21), from which condition
(b) immediately follows.

(b) = (c): Assume that there is a positive number ¢ such that

1 1
o= \/bzk + 1 (bk—1.4 — bk,k+1)2 -5 (be—1% + brp+1) (30)

holds for all k. Then we have

bik = (be—1 + 0)(bppsr +0) (k=1,2,...,n). (31)
Now, given a positive number z, we define the sequence of positive numbers
T2, T3,...,Tne1 to satisty

brek Tkt
bejt1+ 0 Ty,

(k=1,2,...,n). (32)



Then, from egs. (31) and (32), we have

brk Ty

— = = E=1,2,...,n). 33
be1p+0  Tpgr ( ) (33)
Now we determine 7; so that F_, 22 = 1 and define two n-dimensional
vectors X and y by
X =(r1,9,...,2,)", (34)
¥ = (T2, 23, ..., Tny1)l. (35)

Then, using eqs. (32) and (33), it is easy to see that these vectors satisfy the
following relations:

Bx =7y, (36)
By =ox. (37)
Moreover, since X is normalized, we have from eqs. (36) and (37),
1
vy =-x"B'x=x"x=1. (38)
o

Hence, & is a singular value of B and X and y are the corresponding normalized
right and left singular vectors, respectively. Furthermore, since x and y are
positive vectors, from the Perron-Frobenius theory applied to (BTB)~! and
(BBT)~!, we know that & is the smallest singular value. Also, z,,; =
follows from x’x = §'y = 1. Thus we have proved that condition (c) is
satisfied.

(c) = (a): Assume that condition (c) is satisfied. Then from the k-th com-
ponent of Bx = 0,,y, we have

bike = (bp g1 +00)ye (1 <k < n). (39)

Similarly, from the k-th component of BTy = o,,x,

bkkyk = (bk—l,k + O'n):Ek (1 S ]{7 S n) (40)
Multiplying eqgs. (39) and (40) sides by sides and noting that x; > 0 and
yr > 0, we obtain

biy = (bpsrr +00)(bp 1 +0,) (1 <k <n), (41)



or

1 1
op = \/b%k + 1 (b1 — bksr)” — 2 (bk—1. + bk p11) 5 (42)

which shows that the Ostrowski-type bound gives the smallest singular value.
O

4 Example

We close this paper by giving an example of a bidiagonal matrix to which
Theorem 3.3 can be applied.
Consider an n x n upper bidiagonal matrix
o(c+0b) —b

c+b —b

o+b —b

o(o+0)

where o > 0, b > 0, all the upper subdiagonal elements are —b and the second
to (n — 1)th diagonal elements are o + b. For this matrix, the argument of the
minimum in the right-hand-side of the Ostrowski-type lower bound gives the
same positive value o for all k. So the condition (b) in Theorem 3.3 is satisfied
and the value o given by the Ostrowski-type bound should be the smallest
singular value.

If we define two n-dimensional vectors x and y by

o(o+b)

1 o+b
o(o+b) o(o+b)
o+b o+b

X=c : and y=c : , (44)

o(o+b) o(o+b)
o+b o+b

(o+b)
o+b 1

where c is a normalization constant, it is easy to see that x and y are singular

10



vectors of B belonging to the singular value o. Since both are positive vectors,
it is clear that o is the smallest singular value of B. Hence the condition (a)
is satisfied. Also, condition (c) holds apparently.
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