非対称行列向けマルチシフト QR 法の性能予測方式

山 本 有 作[†]

Braman らによって提案された small-bulge マルチシフト QR 法は,キャッシュマシン上で非対称密行列の固有値を求めるための効率的なアルゴリズムである。しかし,このアルゴリズムの性能を引き出すには,対象とする計算機アーキテクチャと行列サイズ n に応じて,ブロックサイズ m を適切に設定することが不可欠である。そこで本報告では,ブロックサイズの最適値を実行前に求めるための性能予測モデルを提案する。本モデルは階層型のモデリング手法に基づいており,n,mの値と,レベル 3 BLAS,ダブルシフト QR 法ルーチンなどのアルゴリズム構成要素の性能データとを入力として,small-bulge マルチシフト QR 法全体の実行時間を予測する。本モデルを用いて PowerPC G5 および Opteron 上での実行時間を予測したところ,m の値による実行時間の変化を定性的に再現することができた。

Performance Modeling of a Multishift QR Algorithm for the Nonsymmetric Eigenvalue Problem

YUSAKU YAMAMOTO[†]

The small-bulge multishift QR algorithm proposed by Braman, Byers and Mathias is one of the most efficient algorithms for computing the eigenvalues of nonsymmetric matrices on processors with hierarchical memory. However, to fully extract its potential performance, it is crucial to choose the block size m properly according to the target architecture and the matrix size n. In this paper, we construct a performance model for this algorithm. The model has a hierarchical structure that reflects the structure of the original algorithm and given n, m and the performance data of the basic components of the algorithm, such as the level-3 BLAS routines and the double implicit shift QR routine, predicts the total execution time. Experiments PowerPC G5 and Opteron processors show that the variation of the execution time as a function of m predicted by the model agrees with the measurements.

1. はじめに

QR法¹¹⁾¹²⁾¹⁵⁾は非対称密行列の固有値を求めるた めの信頼性の高いアルゴリズムとして広く使われて いる。近年では、シミュレーションの大規模化・精密 化に伴って固有値計算が大型化するとともに、PCや ワークステーション上で計算を行うケースが増えつつ ある。そのため、これらのマシン上で大規模行列に対 するQR法を高速に実行することが重要な課題となっ ている。

PC やワークステーションで使われているマイクロ プロセッサは多種にわたるが,これらはいずれも数百 KB ~数 MBのキャッシュを持ち,データ参照の局所 性を高めてキャッシュを有効利用することがプログラ ムの性能向上のために決定的に重要である.しかし, オリジナルの QR 法はデータ参照の局所性が低い。実際, 広く利用されているダブルシフト QR 法を $n \times n$ のヘッセンベルグ行列に対して適用した場合,反復1回にあたりの演算量は $O(n^2)$ であり,かつ行列要素すべてへのアクセスが必要である。したがって,アクセス1回あたりの演算量は高々O(1)となる。このため,キャッシュが重要な最近のマイクロプロセッサにおいてオリジナルの QR 法を高速に実行することは困難である。

このため,QR 法の高速化に向けて様々な試みが行われている^{2)4)10)14)16)17)。中でも,Braman らによるsmall-bulge マルチシフト QR 法⁴⁾はもっとも有望な手法である。このアルゴリズムは,複数個(m 個)のシフトを用いてm回分の反復を同時に行うマルチシフト QR 法の一種であり,ダブルシフト QR 法と比べてデータ参照の局所性をm/2倍に高めることが可能である。従来のマルチシフト QR 法²⁾では数値的不安定による収束特性の悪化という問題があったが¹⁰⁾¹⁸⁾,}

[†] 名古屋大学大学院工学研究科 計算理工学専攻

Department of Computational Science and Engineering, Nagoya University

small-bulge マルチシフト QR 法では,反復における 更新演算の仕方を工夫することでこの不安定性を解消 し,ダブルシフト QR 法と同等の収束性を実現してい る。この結果,Origin2000 による評価では,データ 参照の局所性向上の効果により,LAPACK¹⁾の3倍 の性能が得られることが報告されている。

small-bulge マルチシフト QR 法の性能を最大限に 引き出すには,シフト数(ブロックサイズ) m を適切 に選ぶことが必要である。m の値を大きくするとデー タ参照の局所性は向上するが,シフトの計算のための 演算量が増大する。そのため,最適な m の値は対象 とする計算機アーキテクチャと行列サイズにより異な る。実験により m の最適値を求めようとすると,多 大な時間を要してしまう。

そこで本報告では,small-bulge マルチシフト QR 法に対する実行時間モデルを提案する。本モデルは, Dackland ら⁷⁾ と Cuenca ら.⁶⁾⁵⁾ により提案された階 層型のモデリング手法に基づいており,アルゴリズム の構成要素であるレベル 3 BLAS ルーチン,ダブル シフト QR 法ルーチンなどの性能データを入力するこ とで,行列サイズ n,ブロックサイズ m の場合の実 行時間を予測する。本モデルの利用により,mの値を 実行前に最適化することが可能となる。

以下では,まず2章で small-bulge マルチシフト QR 法のアルゴリズムを説明し,3章で我々の提案するモ デルの詳細を述べる。次に4章で,モデルによる性能 予測結果を紹介する.最後に5章でまとめを述べる.

2. small-bulge マルチシフト QR 法

2.1 従来のマルチシフト QR 法とその問題点

 $n \times n$ のヘッセンベルグ行列 A に対する QR 法を考 え,QR 法の反復を l 回行って得られる行列を A_l と する。ダブルシフト QR 法では, A_l から A_{l+2} を計算 するため, A_l の右下隅の 2×2 行列の固有値 σ_1 , σ_2 を求め,これらをシフトとして QR 法の反復を 2 回分 同時に行う。実際の計算では, A_l に対してハウスホ ルダー変換を行うことにより,その左上隅に,2 個の シフトの情報を含む 4×4 のバルジ(ヘッセンベルグ 形からの出っ張り)を導入し,それをハウスホルダー 変換によって 1 行ずつ右下に移動させ,最後に右下隅 から追い出すという処理を行う⁸⁾¹³⁾。これをバルジ・ チェイシングと呼ぶ。こバルジ・チェイシングにより 得られる行列が A_l に対して QR 法の反復を 2 回行っ て得られる行列に一致することは,陰的 Q 定理⁸⁾¹³⁾ により保証される。

このアルゴリズムを一般化することにより、マルチ

シフト QR法が得られる $^{2)}$ 。マルチシフト QR法では, A_l の右下隅の $m \times m$ 行列の固有値 $\sigma_1, \sigma_2, \ldots, \sigma_m$ を 求め,これらをシフトとして用いる。Bai らが提案し たオリジナルのマルチシフト QR 法では , この m 個の シフトを用いて QR 法の反復を m 回分同時に行うた め, A_l の左上隅にシフト情報を含む $(m+2) \times (m+2)$ の大きなバルジを導入し、これをバルジ・チェイシング によって右下隅から追い出すことにより, A_{l+m} を計 算する。これにより,この計算では,行列の各要素に 対して O(m) の演算を行うことができ、ダブルシフト QR 法と比べてデータ参照の局所性を m/2 倍に向上で きる。このアルゴリズムは,LAPACKのDHSEQR に採用されている。しかし、このアルゴリズムでは、 バルジが大きくなると数値的不安定が生じるため, m を高々10 程度にしか取れない¹⁸⁾。そのため,最近の マイクロプロセッサではキャッシュを十分に活用でき ず,性能が発揮できないという問題があった。

2.2 small-bulge マルチシフト QR 法

この問題を解決するため, Braman, Mathias, Byers は small-bulge マルチシフト QR 法と呼ばれる新 しいアルゴリズムを開発した⁴⁾。この手法では, m 個 のシフトを 2 個ずつの m/2 組に分け, バルジ・チェ イシングにおいては 4×4 の小さいバルジを m/2 個 同時にチェイシングする。このアルゴリズムは,数学 的には Bai らのマルチシフト QR 法と等価であるが, 大きなバルジに伴う数値的不安定を回避でき,ダブル シフト QR 法と同等の収束性を達成できる。

Small-bulge マルチシフト QR 法におけるバルジ・ チェイシングは,次に述べる通り3つのフェーズに分けられる。

2.2.1 フェーズ I: バルジ群の導入

まずフェーズ I では,行列の左上隅より,4×4のバ ルジ m/2 個を連続して導入する。バルジ間での演算の 干渉を避けるには,隣り合うバルジは3行以上離す必 要があるため⁴⁾,このフェーズが終了すると,行列の 第1行目から第3m/2+1行目にかけてm/2 個のバル ジが並ぶ(図1)。フェーズ I におけるバルジ・チェイ シングは, A_l の左上隅の $(3m/2+1) \times (3m/2+1)$ 行 列(これを $A_{l,1:3m/2+1,1:3m/2+1}$ と書く)のみを使っ て行えることに注意すると,フェーズ I の演算を次の 2 つの部分に分けることができる(図2参照)。

(a) $A_{l,1:3m/2+1,1:3m/2+1}$ に対してハウスホルダー変換を繰り返してバルジ・チェイシングを行い,m/2個のバルジを第1行目から第3m/2+1行目に持ってくる。同時に,これらのハウスホルダー変換の積を $(3m/2+1) \times (3m/2+1)$ 行列 Uとして蓄

積する。

- (b) 第1行~第3m/2+1行の残りの部分
 - A_{1,1:3m/2+1,3m/2+2,n}(非対角ブロック)に U を 左側から掛けることにより,この部分を更新する。

この 2 つのうち,ステップ (b) は完全にレベル 3 BLAS,すなわち行列乗算を用いて実行できる。ス テップ (a) はレベル 3 BLAS を用いては行えないが, $m \ll n$ ならば,この部分がフェーズ I の演算量に占 める割合は小さい。したがって,演算のほとんどをレ ベル 3 BLAS を用いて行うことが可能となる。

2.2.2 フェーズ II: 中心部の演算

フェーズ II では,行列の最初の3m/2 + 1行にあ るバルジ群をチェイシングし,最後の3m/2 + 1行に まで持ってくる。いま,ある整数kを決め,バルジ群 をk行下へ移動させる処理を一まとまりの処理とし て考える(図3),m/2個のバルジは3m/2 + 1本の 行を占めるため,この処理に関わる行・列はそれぞれ 3m/2 + k本である。フェーズ I の場合と同様,この 処理を3つの部分に分けることができる。

- (a) $(3m/2+k) \times (3m/2+k)$ の対角ブロック内部で バルジ・チェイシングを行い,そこで用いたハウ スホルダー変換の積を $(3m/2+k) \times (3m/2+k)$ の行列 Uとして蓄積する。
- (b) 3m/2+k 本の行の非対角ブロックに左から U を 掛け,この部分を更新する。
- (c) 3m/2+k本の列の非対角ブロックに右から Uを 掛け,この部分を更新する。
- フェーズ I と同様に, ステップ (b), (c) はレベル 3

BLAS のみを用いて行うことができるため,フェーズ II も演算のほとんどをレベル 3 BLAS で実行できる。 なお,Braman らは演算量の解析により, $k \sim \frac{3}{2}m$ と するのが演算量最小化の面から最適であることを示し ている。

2.2.3 フェーズ III: バルジ群の追い出し

フェーズ IIIでは,行列の最後の3m/2+1行にあ るバルジ群をチェイシングして右下隅から追い出す。 この処理もフェーズ I と同様,2 つの部分に分けるこ とができ,演算量のほとんどを占める非対角ブロック の更新はレベル3 BLAS を用いて行える。

2.2.4 その他の処理

small-bulge マルチシフト QR 法の演算として は、以上のフェーズ I ~ III の処理に加え、シフト $\sigma_1, \sigma_2, \ldots, \sigma_m$ を求めるための演算が必要である。ま た、計算が進行して行列が十分に小さくなった場合は、 ダブルシフト QR 法に切り替えて残りの行列の固有値 計算を行う。しかし、全計算量の中でこれらの計算の 占める割合は小さい。このため、small-bulge マルチ シフト QR 法では演算の大部分をレベル 3 BLAS で 行うことができ、キャッシュの有効利用が可能となる。 Braman らは、Origin2000 上での評価において、本 アルゴリズムが LAPACK DHSEQR の 3 倍高速であ ると報告している⁴⁾。

2.3 アルゴリズム中で用いられる演算ルーチン 前節での説明から明らかなように, small-bulge マ ルチシフト QR 法は次の4 種類の演算ルーチンから 構成される。

- (A) 対角ブロック内部でのバルジ・チェイシング。以下では、フェーズ I、II、III のためのバルジ・チェイシングのルーチンをそれぞれ BCHASE1、BCHASE2、BCHASE3と書く。
- (B) 非対角ブロックの更新を行うためのレベル 3 BLAS
 ルーチン。具体的には,密行列乗算 C = AB を
 行うルーチン DGEMM を用いる。行ブロック
 の更新では,A も B も非転置の場合のルーチン
 (DGEMM-NN),列ブロックの更新ではAが非転

置, *B* が転置の場合のルーチン(DGEMM-NT) が必要である。

- (C) 非対角ブロックの更新(行列 U による乗算)の結果を元の行列に書き込むためのコピールーチン。
 行ブロック,列ブロックのコピーのためのルーチンをそれぞれ COPY1, COPY2 と書く。
- (D) シフトの計算,および A_lのサイズが十分小さく なったときの A_lの固有値の計算に用いるダブル シフト QR 法のルーチン。これには,EISPACK の HQR を用いる。

次章で述べる階層型の性能モデル作成においては,こ れらのルーチンを基本演算ルーチンとして用いる。

2.4 最適ブロックサイズ

small-bulge マルチシフト QR 法の性能を引き出す には,ブロックサイズ m を適切に選ぶことが必要で ある。一般に,mが大きいほどデータの再利用性は向 上し,レベル 3 BLAS 部分の性能を高くできるが,そ の反面,シフト計算の演算量,および BCHASE1 ~ 3 の演算量は m とともに増大する。最適な m はこのト レードオフによって決まり,対象とする計算機や行列 サイズ n により大きく異なる。たとえば Braman らは, Origin2000 上での評価において,1000 $\leq n \leq 1999$ の 場合は $m = 60,2000 \leq n \leq 2499$ の場合は m = 116, $2500 \leq n \leq 3999$ の場合は m = 150 という値を用い ている⁴⁾。本研究では,性能予測モデルを用いること により,最適な m の値を実行前に予測することを目 的とする。

3. 性能予測モデル

3.1 階層型の性能モデリング手法

small-bulge マルチシフト QR 法の性能予測モデル を構築するため,本研究では階層型の性能モデリン グ手法⁵⁾⁶⁾⁷⁾を用いる。この手法では,まずレベル3 BLAS ルーチン,ダブルシフト QR 法ルーチンなど の基本演算ルーチンに対し,実測性能に基づく性能モ デルを構築する。次に,アルゴリズム中でのこれらの ルーチンのコール1回1回に対して,コール時の入力 パラメータと性能モデルに基づき,その実行時間を予 測する。最後に,各コールに対する予測時間を積み上 げることにより,アルゴリズム全体の実行時間を予測 する。この手法は,LU分解⁶⁾,QR分解⁷⁾,レベル3 BLAS に基づく三重対角化アルゴリズム²⁰⁾などの性 能モデリングに適用され,予測精度と予測コストの両 面で満足できる結果を与えることが示されている。

3.2 基本演算ルーチンの性能モデリング

先に 2.3 で述べた通り,基本演算ルーチンとして

は BCHASE1, BCHASE2, BCHASE3, DGEMM-NN, DGEMM-NT, COPY1, COPY2, HQR の8 個がある。ここでは, BCHASE2を例としてモデリン グの実際を示す。このルーチンは,フェーズIIにおいて 対角ブロック内部のバルジ・チェイシングを行うルーチ ンであり,シフト数 m とチェイシングの行数 k の 2 つ の入力パラメータを持つ。そこで,m,kを与えたとき のモデルによる実行時間の予測値を $f_{\rm BCHASE2}(m,k)$ で表す。

モデルを構築するには,まず (m,k) 平面の格子点において,BCHASE2の性能を測定する。ここでは, $m \ge 10 \le m \le 150$ の範囲で 10 おきに動かし,k は $\frac{1}{5}m, \frac{2}{5}m, \frac{3}{5}m, \frac{4}{5}m, m$ の5通りに動かして測定を行った。そして,各kに対する $f_{BCHASE2}(m,k)$ の関数形としてmの3次関数

 $f_{\text{BCHASE2}}(m,k)$

 $= f_{\rm BCHASE2}^{(k)}(m)$

 $= a_3^{(k)} m^3 + a_2^{(k)} m^2 + a_1^{(k)} m + a_0^{(k)}.$ (1) を仮定し,係数 $a_3^{(k)}, a_2^{(k)}, a_1^{(k)}$ and $a_0^{(k)}$ を最小2 乗法 により求めた。これ以外のkの値に対する関数値は, kに関する補間を用いて求めることにした。補間とし ては,もっとも簡単な1次補間を用いた。これは,近 似すべき関数がキャッシュミスなどの影響で滑らかで

ない可能性があり,その場合,高次の補間は不安定と なる可能性があるからである。

他の基本演算ルーチンに対しても,同様にして性能 モデリングを行った。COPY1,COPY2,DGEMM-NN,DGEMM-NT は入力パラメータが2つ(ここで のDGEMMでは行列の一方は正方行列)なので,モデ リング手法は BCHASE2 と同じであり,BCHASE1, BCHASE3,HQR はパラメータが1つ(mのみ)な のでモデリングはより容易である。

3.3 アルゴリズム全体の性能モデリング

以上の基本演算ルーチンに対する性能モデルを用い て,small-bulge マルチシフト QR 法に対する性能モ デルを構築する。そのため,まず,BCHASE1_TIME, DGEMM_TIME,COPY1_TIME,HQR_TIME な どという名前のルーチンを作成した。これらはそれ ぞれBCHASE1,DGEMM,COPY1,HQRと同じ 引数を持つが,計算は行わず,代わりに与えられた入 カパラメータに対するそのルーチンの予測実行時間を 返すルーチンである。次に,small-bulge マルチシフ ト QR 法のプログラムにおいて,基本演算ルーチンす べてを_TIME の付いた時間予測ルーチンで置き換え, 各ルーチンが返す予測時間を累積するようにした。こ れにより,このプログラムを実行すると,与えられた 入力パラメータ m, n に対する small-bulge マルチシ フト QR 法の予測実行時間が得られることになる。こ の手法は,レベル 3 BLAS を用いた三重対角化アル ゴリズムの性能予測にも適用され,様々なマシン,入 カパラメータに対して 5 ~ 10%の精度で予測を行え ることが示されている²⁰⁾。

なお,QR法は反復法であるため,プログラム中で 収束判定が必要であるが,ここで作成した実行時間予 測プログラムでは実際の計算を行わないため,収束判 定ができない。そこで,マルチシフトQR法では多く の場合に4反復で1個の固有値が計算できるという Kressnerの観察に基づき,収束までの全反復回数を 4n回と仮定した。

4. 実験結果

4.1 実験環境

ここで提案した性能モデルを評価するため PowerPC G5 (2.0GHz) と Opteron (1.8GHz) の 2 つ のプロセッサ上で実験を行った。G5 では IBM XL Fortran コンパイラを用い,コンパイルオプションは-O3 -qsmp=omp -qarch=ppc970 -qtune=ppc970 と した。また,Opteron では GNU f77 コンパイラを用い た。BLAS は両方とも GOTO BLAS を用いた。smallbulge マルチシフト QR 法の入力としては,[-1,1] の 一様乱数を要素とする密行列を生成し,ハウスホル ダー変換によりヘッセンベルグ形に変形して用いた。 行列サイズ n は 1000,2000,4000,8000 の 4 通り とし,m は 30,60,90,120 の 4 通りとした。

4.2 実験結果

PowerPC G5 での予測実行時間と実測実行時間(単 位は秒)を表1に示す。表から明らかなように,本モ デルで予測した実行時間はかなりの過大評価となって いる。これは主として,固有値1個の計算に平均して 4 反復が必要という見積もりが過大だったことによる と考えられる。実際,この行列に対して,固有値1個 の計算のために必要な反復回数は, n によっても異な るが, 3.5 回前後であった。ただし, m を変えたとき の実行時間の増減については,本モデルにより定性的 に再現できている。実際, n = 1000, 2000, 4000 に ついては,モデルから予測される最適な mの値は真 の最適値と一致している。n = 8000の場合について は,正しい予測はできていないが,モデルにより予測 された最適値 m = 90 を用いた場合の実行時間は,真 の最適値 m = 120 を用いた場合に比べて 3%弱増加 するだけである。

一方, Opteron での予測実行時間と実測実行時間と

を表 2 に示す。PowerPC G5 の場合と同様,予測実 行時間は過大評価となっているが,m による実行時 間の変化の傾向はほぼ再現できており,予測した最適 値は,真の最適値に等しいか,あるいはその隣の値と なっている。

以上より,本モデルは,small-bulge マルチシフト QR 法において最適な m の値を予測するために使用 できる見込みがあると考えられる。ただし,三重対角 化アルゴリズムの例²⁰⁾と比べると,モデルの誤差は まだ大きく,その原因の解明が必要である。

表 1 PowerPC G5 での予測実行時間(下段)と実測実行時間(上 段)

n	m = 30	m = 60	m = 90	m = 120
1000	5.84	5.27	5.12	6.75
	8.28	6.79	6.77	7.82
2000	42.21	33.75	32.83	34.47
	53.40	40.53	39.59	46.09
4000	356.85	267.65	236.20	260.97
	393.86	288.60	267.22	296.86
8000	3073.24	2496.06	2270.95	2129.30
	3075.62	2180.10	1969.56	2116.30

表 2 Opteron での予測実行時間(下段)と実測実行時間(上段)

n	m = 30	m = 60	m = 90	m = 120
1000	6.56	6.79	6.77	7.85
	7.90	7.45	7.71	8.37
2000	51.97	45.28	47.78	44.26
	59.83	52.62	51.54	54.56
4000	438.81	354.59	325.94	329.58
	461.69	401.12	376.20	384.17
8000	3549.57	2802.24	2620.92	2573.04
	3641.13	3108.63	2888.67	2919.31

5. 結 論

本報告では非対称密行列の固有値を求めるための small-bulge マルチシフト QR 法に対し,性能予測モ デルを提案した。本モデルは階層型のモデリング手法 に基づいており,行列サイズ n,シフト数 m と,レ ベル 3 BLAS,ダブルシフト QR 法ルーチンなどの アルゴリズム構成要素の性能データとを入力として, small-bulge マルチシフト QR 法全体の実行時間を予 測する。PowerPC G5 および Opteron 上での実行時 間の予測を行ったところ,m の値による実行時間の 変化を定性的に再現することができた。これにより, 本モデルを small bulge マルチシフト QR 法において 最適な m の値を予測するために使用できる見込みを

得た。

今後の課題としては,(i) 予測誤差の原因を解明し, モデルの精度を向上させること,(ii) より多くのプロ セッサおよび例題を用いてモデルの評価を行うこと, (iii) 本モデルを共有メモリ型並列計算機上での smallbulge マルチシフト QR 法に適用することなどが挙げ られる。

謝辞 日頃から有益な議論をして頂いている自動 チューニング研究会のメンバーに感謝いたします。本 研究は名古屋大学 21 世紀 COE プログラム「計算科 学フロンティア」の補助を受けている.

参考文献

- E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. *LAPACK User's Guide*. SIAM, 1992.
- Z. Bai and J. Demmel. On a block implementation of hessenberg QR iteration. Int. J. of High Speed Computing, 1:97-112, 1989.
- C. Bischof, B. Lang, and X. Sun. Parallel tridiagonalization through two-step band reduction. Technical Report 17, PRISM Working Note, 1994.
- 4) K.Braman, R.Byers, and R.Mathias. The multishift QR algorithm. part I: Maintaining wellfocused shifts and level 3 performance. *SIAM Journal on Matrix Analysis and Applications*, 23(4):929-947, 2002.
- 5) J. Cuenca, L-P. Garcia, and D. Gonzalez Gimenez. Empirical modelling of parallel linear algebra routines. In *Proceedings of the 5th International Conference on Parallel Processing* and Applied Mathematics (PPAM2003), number 3019 in Lecture Notes in Computer Science, pages 169–174. Springer-Verlag, 2004.
- J. Cuenca, D. Gimenez, and J. Gonzalez. Architecture of an automatically tuned linear algebra library. *Parallel Computing*, 30:187–210, 2004.
- 7) K. Dackland and B. Kågström. A hierarchical approach for performance analysis of ScaLAPACK-based routines using the distributed linear algebra machine. In Proceedings of Workshop on Applied Parallel Computing in Industrial Computation and Optimization (PARA96), number 1184 in Lecture Notes in Computer Science, pages 187–195. Springer-Verlag, 1996.
- J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

- 9) Jack Dongarra, S. J. Hammarling, and D. C. Sorensen. Block reduction of matrices to condensed forms for eigenvalue computations. *Journal of Computational and Applied Mathematics*, 27:215-227, 1989.
- A. Dubrulle. The multishift QR algorithm: Is it worth the trouble? Palo Alto Scientific Center Report G320-3558x, IBM Corp., 1991.
- J. G. F. Francis. The QR transformation. a unitary analogue to the LR transformation. I. *Comput. J.*, 4:265-271, 1961/1962.
- 12) J. G. F. Francis. The QR transformation. II. Comput. J., 4:332–345, 1961/1962.
- G. H. Golub and C. F. van Loan. *Matrix Computations*. Johns Hopkins University Press, third edition, 1996.
- 14) G. Henry, D. S. Watkins, and J. Dongarra. A parallel implementation of the nonsymmetric QR algorithm for distributed memory architectures. SIAM J. Sci. Comput., 24(1):284–311, 2002.
- 15) V. N. Kublanovskaya. On some algorithms for the solution of the complete eigenvalue problem. U.S.S.R. Comput. Math. and Math. Phys., 3:637-657, 1961.
- 16) D. S. Watkins. Bidirectional chasing algorithms for the eigenvalue problem. SIAM J. Matrix Anal. Appl., 14:166-179, 1993.
- D. S. Watkins. Shifting strategies for the parallel QR algorithm. SIAM J. Sci. Comput., 15:953–958, 1994.
- 18) D. S. Watkins. The transmission of shifts and shift blurring in the QR algorithm. *Linear Al*gebra and Its Applications, 241/243:877-896, 1996.
- 19) Y.-J. J. Wu, P. A. Alpatov, C. Bischof, and R. A. van de Geijn. A parallel implementation of symmetric band reduction using PLAPACK. In *Proceedings of the Scalable Parallel Libraries Conference*, 1996.
- 20) Y. Yamamoto. Performance modeling and optimal block size selection for a blas-3 based tridiagonalization algorithm. In *Proceedings of HPC-Asia 2005*, pages 249–256, Beijing, December 2005.