
Chapter �

VECTOR�PARALLEL ALGORITHMS FOR

��DIMENSIONAL FAST FOURIER TRANSFORM

Yusaku Yamamoto�

Dept� of Computational Science and Engineering

Nagoya University

yamamoto�na�cse�nagoya�u�ac�jp

Hiroki Kawamura

Hitachi Software Engineering Corp�

kawamu h�itg�hitachi�co�jp

Mitsuyoshi Igai

Hitachi ULSI Systems Corp�

igai�hitachi�ul�co�jp

Abstract We review ��dimensional FFT algorithms for distributed�memory ma�

chines with vector processing nodes� To attain high performance on

this type of machine� one has to achieve both high single�processor per�

formance and high parallel e�ciency at the same time� We explain

a general framework for designing ��D FFT based on a ��dimensional

representation of the data that can satisfy both of these requirements�

Among many algorithms derived from this framework� two variants are

shown to be optimal from the viewpoint of both parallel performance

and usability� We also introduce several ideas that further improve

performance and �exibility of user interface� Numerical experiments

on the Hitachi SR����� a distributed�memory parallel machine with

pseudo�vector processing nodes� show that our program can attain 	
�

of the peak performance when computing the FFT of ��� points using

�	 nodes�

�This work was done while the author was at the Central Research Laboratory� Hitachi Ltd�

�



�

Keywords� fast Fourier transform� distributed�memory� vector processor� parallel

algorithm� Stockham�s algorithm� cyclic distribution� block cyclic dis�

tribution� SR����

�� Introduction

The Fourier transform is one of the most fundamental tools in sci�
ence and engineering and has applications in such diverse areas as signal
processing� time series analysis and solution of partial di�erential equa�
tions� While a straightforward computation of the Fourier transform
of N points requires O�N�� work� Cooley and Tukey proposed a novel
algorithm called the fast Fourier transform �FFT� that requires only
O�N logN� work in ���	 
��� Since then� many variants of the FFT
have been proposed so far� including autosort FFT 
���
�	�� FFT for
general N 
��� FFT for real data 
��
�	� and so on�

The FFT has a large degree of parallelism in each stage of the compu�
tation� and accordingly� its implementations on parallel machines have
been well studied� See� for example� 
	� 
�
� for implementations on
shared�memory parallel machines and 
�� 
�� 
�� 
��� 
�
� 
��� 
��� for
implementations on distributed�memory parallel machines�

In this article� we review ��dimensional FFT algorithms for distributed�
memory machines with �pseudo��vector processing nodes� This type of
machines have become increasingly popular recently in high�end appli�
cations such as weather forecasting and electronic structure calculation�
Representative machines that fall into this category include NEC SX���
Fujitsu VPP	��� and Hitachi SR���� and SR�����

To attain high performance on this type of machine� one has to achieve
both high single�processor performance and high parallel e�ciency at the
same time� The former is realized by maximizing the length of the inner�
most loops� while the latter is realized when the volume and frequency
of inter�processor communication is minimized� We explain a general
framework for ��dimensional FFT based on a 
�dimensional represen�
tation of the data 
��
��� that satis�es both of these requirements� In
designing an FFT routine using this framework� one can consider several
possible variants which di�er in the way the data is distributed among
the processing nodes at each stage of computation� We examine these
variants and point out that two of them are optimal from the viewpoint
of both parallel performance and usability� They need only one global
transposition and input�output data using cyclic distribution� One of
them called the variant zzx coincides with the algorithm proposed by
Takahashi 
����



Vector�Parallel Algorithms for ��Dimensional Fast Fourier Transform �

Next� we introduce several ideas to further improve the performance
and �exibility of user interface� Speci�cally� we describe methods for
enhancing single�processor performance by increasing the length of the
innermost loops and enhancing parallel e�ciency by overlapping inter�
processor communication with computation� We also propose an exten�
sion that enables the routine to input�output data using general block
cyclic distributions� The block sizes for input�output data can be spec�
i�ed independently by the user and this �exibility is realized without
increase in the amount of interprocessor communication�

The rest of this paper is organized as follows� In section � we describe
the general framework for 	�D FFT based on the 
�dimensional repre�
sentation and �nd out the best variants among those derived from this
framework� Ideas for further improving their performance and �exibility
of user interface are introduced in section 
� Section � shows the perfor�
mance of our program on the Hitachi SR���	� Conclusions are given in
the �nal section�

�� A general framework for ��D FFT on
vector�parallel machines

In this section� we will explain a general framework for designing a
	�dimensional FFT routine on vector�parallel machines following 
�� 

�

	��� It is intended to achieve both high single�processor performance and
high parallel e�ciency at the same time and is based on a 
�dimensional
representation of the data� To derive the framework� we start with the
case of 	�D FFT algorithms for vector machines�

��� A ��D FFT algorithm for vector machines
based on a ��dimensional representation of
data

The discrete Fourier transform of a 	�dimensional complex sequence
ff�� f�� � � � � fN��g is de�ned as follows�

ck �
N��X

j��

fj�
jk
N �k � �� 	� � � � � N � 	�� �	�	�

where �N � exp����i�N� and i �
p�	�

When N can be factored as N � NxNy� the indices j and k can be
expressed in a two�dimensional form�

j � jxNy � jy �jx � �� � � � � Nx � 	� jy � �� � � � � Ny � 	�� �	���

k � kx � kyNx �kx � �� � � � � Nx � 	� ky � �� � � � � Ny � 	���	�
�



�

Accordingly� ffjg and fckg can be regarded as two�dimensional arrays�

fjx�jy � fjxNy�jy � �����

ckx�ky � ckx�kyNx
� ���	�

Using these notations� we can rewrite eq� ����� as follows�

ckx�ky �

Ny��X

jy��

Nx��X

jx��

fjx�jy�
�jxNy�jy��kx�kyNx�
N

�

Ny��X

jy��

�
�
�
�

Nx��X
jx��

fjx�jy�
jxkx
Nx

�
A�

jykx
N

�
A�

jyky
Ny

� ���
�

This shows that the Fourier transform of ffjg can be computed by the
following algorithm proposed by Bailey ��
�

�Algorithm �


� Compute c�kx�jy �
PNx��

jx��
fjx�jy�

jxkx
Nx

by repeating Nx�point FFT
Ny times�

� Multiply c�kx�jy by �
jykx
N �

� Compute ckx�ky �
PNy��

jy��
c�kx�jy�

jyky
Ny

by repeating Ny�point FFT
Nx times�

The factor �
jykx
N appearing in step � is called twiddle factor and the step

� is called twiddle factor multiplication� This algorithm requires about
the same amount of computational e�ort as the FFT of N data points�
It is especially suited to vector machines if Ny and Nx are chosen so

that both of them are O�
p
N� and the loops over jy and kx are used as

the innermost loops in steps � and �� respectively� Then the innermost
loops will have a �xed length of O�

p
N� � Moreover� the factor � is a

constant within these loops and can be loaded outside the loops�

��� The �ve�step FFT based on a ��dimensional
representation of data

In the algorithm explained in the previous subsection� we decompose
the ��D FFT into multiple FFTs of smaller size and use the multiplic�
ity for vectorization� In the case of distributed�memory vector�parallel
machines� we need another dimension to use for parallelization� To this
end� we factor N as N � NxNyNz and introduce a three�dimensional



Vector�Parallel Algorithms for ��Dimensional Fast Fourier Transform �

representation for the indices j and k�

j � jxNyNz � jyNz � jz �����

�jx � �� � � � � Nx � �� jy � �� � � � � Ny � �� jz � �� � � � � Nz � ���

k � kx � kyNx � kzNxNy ���	�

�kx � �� � � � � Nx � �� ky � �� � � � � Ny � �� kz � �� � � � � Nz � ���

By regarding the input and output sequences as three
dimensional arrays
fjx�jy �jz and ckx�ky �kz � we can rewrite eq� ����� as follows�

ckx�ky �kz

�
Nz��X

jz��

�
�
�
�

Ny��X
jy��

�
�
�
�

Nx��X
jx��

fjx�jy �jz�
jxkx
Nx

�
A�

jykx
NxNy

�
A�

jyky
Ny

�
A�

jz�kx�kyNx�
N

�
A�

jzkz
Nz

�

�����

This suggests the following 
ve
step FFT �����

�Algorithm �� Five
step FFT�

� Compute c�kx�jy �jz �
PNx��

jx��
fjx�jy �jz�

jxkx
Nx

by repeating Nx
point
FFT NyNz times�

� Twiddle factor multiplication �I�� multiply c�kx�jy �jz by �
jykx
NxNy

�

� Compute c��kx�ky �jz �
PNy��

jy��
c�kx�jy �jz�

jyky
Ny

by repeating Ny
point
FFT NxNz times�

� Twiddle factor multiplication �II�� multiply c��kx�ky �jz by �
jz�kx�kyNx�
N �

� Compute ckx�ky �kz �
PNz��

jz��
c��kx�ky �jz�

jzkz
Nz

by repeating Nz
point
FFT NxNy times�

Because the operation in step � consists of NyNz independent FFTs� we
can� for example� use the index jy for vectorization and the index jz for
parallelization� Steps � and � can be executed in a similar way�

��� A general framework for vector�parallel FFT
based on the �ve�step algorithm

There are many possible ways to exploit the parallelism in Algorithm
� for vectorization and parallelization� For example� in step �� we can use
the y
direction for vectorization and the z direction for parallelization�
or vice versa� Similarly� we have two possible choices in each of steps �



�

and �� In total� there are �� � � possible variants� In this subsection�
we clarify which variant is optimal from the viewpoint of both parallel
performance and usability�

Let zxy denote the variant which uses z� x and y�directions for par�
allelization in steps �� � and �� respectively� In this variant� the ��
dimensional arrays are scattered along the z�direction among the nodes
in step �� while they are scattered in the x and y�direction in step �
and �� respectively� Accordingly� redistribution of the array is necessary
after step � and step �� This operation is called global transposition�
Among the eight possible variants� yxy� yzx� yzy and zxy need two
global transpositions� In contrast� variants yxx� zxx� zzx and zzy need
only one global transposition and their communication overhead is half
of the former ones� We can therefore expect that the latter group will
achieve higher parallel performance and consider only them from now
on� We illustrate the vectorization and parallelization in the zxx variant
in Fig� ����

Figure ���� Vectorization and parallelization in the zxx variant�

Now assume that the number of points 	Nx� Ny and Nz
 in the di�
rection along which the array is scattered is divisible by P � the number
of processing nodes� and that we adopt cyclic distribution for scattering
the data in each direction� From eqs� 	���
 and 	���
� we know that
the indices j and k change contiguously when indices jz and kx change
contiguously� respectively� As a result� the input data is distributed in a
cyclic manner in j when the array is scattered in the z�direction� while it
is distributed in a block cyclic manner with block size Nz when the array
is scattered in the y�direction� Similarly� the output data is distributed
in a cyclic manner in k when the array is scattered in the x�direction�
while it is distributed in a block cyclic manner with block size Nx when
the array is scattered in the y�direction� These observations are summa�
rized in Table ��� for the four variants� Here� C and BC denote cyclic
and block cyclic distribution� respectively�



Vector�Parallel Algorithms for ��Dimensional Fast Fourier Transform �

From the table� we can see that the variants yxx and zzy use di�erent
data distributions for the input and output data� while zxx and zzx
use the same �cyclic� distribution� From user�s point of view� it seems
more natural that the FFT routine uses the same data distribution for
input and output data� Thus we can conclude that the variants zxx
and zzx are the best ones judging both from parallel performance and
usability among the eight variants that can be considered within our
general framework� Of these two� the variant zzx has been proposed by
Takahashi ���	 as an algorithm suited to vector
parallel machines�

��� The detailed algorithm of the variant zxx

In this subsection� we describe a detailed algorithm of the �
D parallel
FFT based on the variant zxx� To this end� we �rst introduce some

notations� Let X
�i�
p denote the partial array allocated to node p at step

i� We also de�ne the indices and their ranges as follows�

jx 
 �� � � � � Nx � �� jy 
 �� � � � � Ny � �� jz 
 �� � � � � Nz � �� ������

kx 
 �� � � � � Nx � �� ky 
 �� � � � � Ny � �� kz 
 �� � � � � Nz � �� ������

p 
 �� � � � � P � �� q 
 �� � � � � P � �� ������

j�

z 
 �� � � � � Nz�P � �� ������

k�

x 
 �� � � � � Nx�P � �� ������

Here� j�

z and k�

x are local indices corresponding to jz and kx� respectively�
and are related to the latter in the following way�

jz 
 j�

zP � p� ������

kx 
 k�

xP � p� ������

where p is the node number�
Using these notations� the algorithm can be described as follows�

�Algorithm �� Detailed algorithm of the variant zxx	

Table ���� Comparison of the four variants�

Step Direction of Direction of
transform parallelization�vectorization

variant yxx variant zxx variant zzx variant zzy

Input � BC C C C

� x y�z z�y z�y z�y

� y x�z x�z z�x z�x

� z x�y x�y x�y y�x

Output � C C C BC



�

� Data input� X
���
p �jy� j

�

z� jx� � fjxNyNz�jyNz�j�

z
P�p�

� FFT in the x�direction�

X
���
p �jy� j

�

z� kx� �
PNx��

jx��
X

���
p �jy� j

�

z� jx��
jxkx
Nx

�

� Twiddle factor multiplication �I��

X
���
p �jy� j

�

z� kx� � X
���
p �jy� j

�

z� kx��
jykx
NxNy

�

	 Data packing for global transposition�

X
���
p �jy� j

�

z� k
�

x� q� � X
���
p �jy� j

�

z� k
�

xP 
 q��

� Global transposition� X
�	�
p �jy� j

�

z� k
�

x� q� � X
���
q �jy� j

�

z� k
�

x� p��

� Data unpacking�

X
�
�
p �j�zP 
 q� k�x� jy� � X

�	�
p �jy� j

�

z� k
�

x� q��


 FFT in the y�direction�

X
���
p �jz� k

�

x� ky� �
PNy��

jy��
X

�
�
p �jz� k

�

x� jy��
jyky
Ny

�

� Twiddle factor multiplication �II��

X
���
p �k�x� ky� jz� � X

���
p �jz� k

�

x� ky��
jz�k�

x
P�p�kyNx�

N �

� FFT in the z�direction�

X
�
�
p �k�x� ky� kz� �

PNz��
jz��

X
���
p �k�x� ky� jz��

jzkz
Nz

�

�� Data output� ck�

x
P�p�kyNx�kzNxNy

� X
�
�
p �k�x� ky� kz��

In this algorithm� the most computationally intensive parts are the FFTs

in steps �� 
 and �� The indexing scheme for array X
�i�
p is designed so

that the index with respect to which the Fourier transform is performed
comes last and the loop merging techniques to be described in subsection
��� can be applied easily�

The computational steps of this algorithm are illustrated in Fig� ��� for
the case of N � ��� and P � 	� Here we used the global ��dimensional
array rather than the partial ��dimensional arrays for illustration to facil�
itate understanding� The numbers in the �rst and third ��dimensional
arrays correspond to the indices of input sequence fj and output se�
quence ck� respectively� The shaded area represents elements which are
allocated to node �� and the area enclosed by a thick line represents a set
of elements used to perform a single FFT in the x� y or z�direction� It is
apparent from the �gure that �i� the FFTs in each direction can be com�
puted within each node� �ii� there is only one global transposition� and
�iii� the input and output data are scattered with a cyclic distribution�
as required�



Vector�Parallel Algorithms for ��Dimensional Fast Fourier Transform �

Figure ���� Computational steps of our FFT routine�

�� Further improvements

In this section� we introduce several ideas that can further improve
the performance and usability of the ��dimensional vector�parallel FFT
described in subsection ���� However� all the ideas apply to algorithms
based on other variants as well�

��� Optimization of Nx� Ny and Nz

In the derivation given in subsection ���� Nx� Ny andNz for the variant
zxx were assumed to be arbitrary as long as Nx and Nz are divisible by
P � We can use this freedom to increase the vector length� From Table
��� it can be seen that y� z and y�directions are used for vectorization in
the FFTs in the x� y and z�directions� respectively� So we can maximize
the single�processor performance by maximizing Ny and Nz subject to
the above constraints�

��� Increasing the loop length by loop merging

To further extend the vector length� we can use loop merging tech�
niques ����� First� if Nz�P � �� each processing node computes FFT for



��

multiple values of j�

z in step � of Algorithm �� So the loop over j�

z can
be merged with the loop over jy� extending the loop length to NyNz�P �

Second� we can use Stockham�s algorithm �������� suited for vector
processors in performing the FFT in each step� Let n 	 �p and assume
that we want to compute the FFT of an n
point sequence Y���� �
� Y���� �
�
� � � � Y��n� �� �
� This can be done with the following algorithm�

�Algorithm �� Stockham FFT�

do L � �� p� �
�L � �L

�L � �p�L��

do m � �� �L � �
do l � �� �L � �
YL���l�m� � YL�l�m� � YL�l � �L�m��m�Ln

YL���l�m� �L� � YL�l�m�� YL�l � �L�m��m�Ln

end do

end do

end do

The result is stored in Yp��� �
� Yp��� �
� � � � � Yp��� n� �
�
Notice that the � in the innermost loop does not depend on l� This

means that if we use this algorithm to compute the Nx
point FFT in
step � of Algorithm �� we can merge the loop over l with the loop over
jy� Combined with the loop merging mentioned above� the innermost
loop length is �nally extended to NyNz�L�P �

Because the loop of length �L appears �L times in Stockham�s algo

rithm� the average length of the innermost loops in step � is

NyNz

P
�

Plog�Nx��

L�� �L�L
Plog�Nx��

L�� �L
	

NyNz

P
�

Nx
�
log�Nx

Nx � �

� NyNz log�Nx��P� �����


Hence the loop length can be increased by a factor of Nz log�Nx��P �
Similarly� the innermost loop length in steps � and � can be extended to
NxNz log�Ny��P and NxNy log�Nz��P � respectively�

��� Overlapping the communication with
computation

As we have shown in subsection ���� the variants yxx� zxx� zzx and
zzy can attain higher parallel e�ciency than other variants because they
need only one global transposition� However� even one global transpo

sition incurs considerable overhead because the amount of data each
processing node has to transfer is O�N�P 
 and is comparable to the
computational work per node of O�N logN�P 
� This is expected to



Vector�Parallel Algorithms for ��Dimensional Fast Fourier Transform ��

cause a severe problem for future�generation vector�parallel computers�
for the speed of interprocessor data transfer evolves much more slowly
than the processor speed�

To mitigate the problem� we can construct a modi�ed algorithm in
which the data transfer is overlapped with computation� In this algo�
rithm� the data is divided into two parts depending on whether its jy
index is even or odd and one of them is transferred while the other is
computed� The outline of the algorithm can be stated as follows�

�Algorithm �� Overlapping the communication with computation�

� Compute the FFT in the x�direction using only those elements
with even jy� Multiply the results with twiddle factors�

	 Compute the FFT in the x�direction using only those elements with
odd jy� Multiply the results with twiddle factors� At the same
time� perform global transposition operation for those elements
with even jy�


 Compute the �rst log�Ny � � stages of the FFT in the y�direction
using only those elements with even jy� At the same time� perform
global transposition operation for those elements with odd jy�

� Compute the �rst log�Ny � � stages of the FFT in the y�direction
using only those elements with odd jy�

� Compute the last stage of the FFT in the y�direction using all the
data� Multiply the results with twiddle factors�

� Compute the FFT in the zdirection using all the data�

This algorithm exploits the fact that in the �rst log�Ny � � steps of the
y�FFT� computations involving elements with even jy and those with
odd jy can be done separately ����� As a result� the overhead due to
global transposition can be hidden if the computing times in steps 	 and

 are longer than the communication time in these steps�

��� Use of user�speci�ed input�output block
sizes

In the variant zxx and zzx� both the input and output data are scat�
tered among the processing nodes in a cyclic manner� However� some
users may need more 
exibility of data distribution� For example� block
cyclic distribution is frequently used when solving linear simultaneous
equations or eigenvalue problems on distributed�memory machines ����
So if the user wants to connect the FFT routine with these routines� it



��

is more convenient that the FFT routine can input�output data using
block cyclic data distribution with user�speci�ed block sizes� Note that
the block sizes suitable for input and output data may not be the same�
so it is more desirable if they can be speci�ed independently�

To construct an FFT routine that meets these requirements� we can
use the �ve�step FFT as a basis� Let the block sizes for input and output
data be L� and L�� respectively� and assume that Nz and Nx are divisible
by L��P and L��P � respectively� Now we scatter the three�dimensional
array along the z�direction in steps � and � of Algorithm � using block
cyclic distribution of block size L�� and along the x�direction in steps
��� using block cyclic distribution of block size L�� Then� from eq� 	��
��
we know that the whole input sequence of length N is scattered with
a block cyclic distribution of block size L�� Likewise� the whole output
sequence is scattered with a block cyclic distribution of block size L��
This method requires only one global transposition like the variant zxx
and leaves the room for vectorization using indices jy� jz and jy in steps
�� � and �� respectively�

One shortcoming of this approach is that Ny� which is the length of
the innermost loops in steps � and �� tends to become small because Nx

and Nz need to be large enough to be multiples of L� � P and L� � P �
respectively� We can mitigate this problem by using loop merging tech�
niques described in subsection ���� The readers are referred to ��
� for
more detailed description and performance evaluation of this approach�

�� Experimental results

We implemented Algorithm � on the Hitachi SR���� ��� and evaluated
its performance� The SR���� is a distributed�memory parallel machine
with pseudo�vector processing nodes� Each node consists of a RISC
processor with a pseudo�vector mechanism ����� which preloads the data
from pipelined main memory to on�chip special register bank at a rate
of � word per cycle� One node has peak performance of ���MFLOPS
and ��
MB of main memory� The nodes are connected via a multi�
dimensional crossbar network� which enables all�to�all communication
among P nodes to be done in P � � steps without contention ��
��

Our FFT routine is written in FORTRAN and inter�processor com�
munication is done using remote DMA� which enables data stored in
the main memory of one node to be transferred directly to the main
memory of another node without bu�ering� The FFT in the x� y and z

direction in steps �� 
 and � is performed using Stockham�s radix � FFT
����� a variant of Algorithm � which saves both computational work and
memory access by computing YL�� directly from YL�



Vector�Parallel Algorithms for ��Dimensional Fast Fourier Transform ��

To measure the performance of our FFT routine� we varied the prob�
lem size per node� N�P � from ��� to ���� As for the number of nodes P �
we measured the performance in two cases� namely� P � � and P � ���
We adopted optimization of Nx� Ny and Nz introduced in subsection
���� but did not incorporate the loop merging technique and overlapping
of communication and computation� We didn	t adopt the modi
cations
to make the input�output block sizes user�speci
able� either� Readers
interested in the last point are referred to the performance results given
in ���
� The �	s used in the FFT and twiddle factor multiplication are
pre�computed� so the time for computing them is not included in the
execution time to be reported below�

Table ��� and Fig� ���shows the execution time and the performance
of our routine� From these results� we can see that �i� the maximum
performance on a single node is ���MFLOPS� which is more than ���
of the peak performance and �ii� parallel performance on �� nodes is
����GFLOPS� which is about ��� of the peak performance�

Figure ���� Performance results for P � � and P � ���

Table ���� Performance results for P � � and P � ���

P N�P � �
�� N�P � �

�� N�P � �
�� N�P � �

��

� ������MF �	
��
MF �	����MF �
����MF

������ 	���	� 	����� 	��
�

�� ��

���MF ��

���MF �������MF ��
	��
MF

���
�� ����	� ������ �
�
��



��

From these results� we can conclude that the FFT algorithm described
in this article can attain high performance on a �pseudo��vector�parallel
machine�

�� Conclusion

In this article� we reviewed ��dimensional FFT algorithms for distributed�
memory machines with vector processing nodes� We explained a general
framework for designing ��D FFT based on a ��dimensional representa�
tion of the data that can achieve both high single�processor performance
and high parallel e�ciency at the same time� Among the many algo�
rithms derived from this framework� we showed that two variants are
optimal from the viewpoint of both parallel performance and usability�
We also introduced several ideas that further improve performance and
�exibility of user interface�
We implemented the algorithm on the Hitachi SR		
�� a distributed�

memory parallel machine with pseudo�vector processing nodes� and ob�
tained the performance of ���
MFLOPS� or ��� of the peak perfor�
mance� when transforming 	�� point data on �� nodes� It should be
easy to adapt our method to other similar vector�parallel machines�

Acknowledgments

We would like to thank Dr� Mamoru Sugie at the Central Research
Laboratory� Hitachi Ltd� for many valuable comments on the �rst version
of this paper� We are also grateful to Mr� Nobuhiro Ioki and Mr� Shin�
ichi Tanaka at the Software Development Division of Hitachi Ltd� for
providing the environments for our computer experiments�

References

��� R� C� Agarwal and J� W� Cooley� Vectorized Mixed Radix Dis�
crete Fourier Transform Algorithms� Proc� of IEEE� Vol� �
� No� ��
pp� �	����	�	 �������

�	� R� C� Agarwal� F� G� Gustavson and M� Zubair� A High Prfor�
mance Parallel Algorithm for ��D FFT� Proc� of Supercomputing

���� pp� ����
 �������

��� D� H� Bailey� FFTs in External or Hierarchical Memory� The Jour�

nal of Supercomputing� Vol� �� pp� 	���
 ����
��

��� L� Blackford� J� Choi� A� Cleary� E� D�Azevedo� J� Demmel�
I� Dhillon� J� Dongarra� S� Hammarling� G� Henry� A� Petitet�
K� Stanley� D� Walker and R� Whaley� ScaLAPACK User�s Guide�
SIAM� Philadelphia� PA� �����



REFERENCES ��

��� D� A� Carlson� Ultrahigh�Performance FFTs for the Cray�� and
Cray Y�MP Supercomputers� Journal of Supercomputing� Vol� ��
pp� 	
��		� �	

���

��� J� W� Cooley and J� W� Tukey� An Algorithm for the Machine Cal�
culation of Complex Fourier Series� Mathematics of Computation�
Vol� 	
� pp� �
���
	 �	
����

��� A� Dubey� M� Zubair and C� E� Grosch� A General Purpose Subrou�
tine for Fast Fourier Transform on a Distributed Memory Parallel
Machine� Parallel Computing� Vol� �
� pp� 	�
��	�	
 �	

���

��� H� Fujii� Y� Yasuda� H� Akashi� Y� Inagami� M� Koga� O� Ishihara�
M� Kashiyama� H� Wada and T� Sumimoto� Architecture and Per�
formance of the Hitachi SR��
	 Massively Parallel Processor Sys�
tem� Proc� of IPPS ���� pp� ������	� 	

��

�
� M� Hegland� Real and Complex Fast Fourier Transforms on the
Fujitsu VPP�

� Parallel Computing� Vol� ��� pp� ��
���� �	

���

�	
� S� L� Johnson and R� L� Krawitz� Cooley�Tukey FFT on the Con�
nection Machine� Parallel Computing� Vol� 	�� pp� 	�
	�	��	 �	

���

�		� K� Nakazawa� H� Nakamura� H� Imori and S� Kawabe� Pseudo Vec�
tor Processor Based on Register�Windowed Superscalar Pipeline�
Proc� of Supercomputing ���� pp� ������	 �	

���

�	�� P� N� Swarztrauber� FFT Algorithms for Vector Computers� Parallel
Computing� Vol� 	� pp� ����� �	
����

�	�� P� N� Swarztrauber� Multiprocessor FFTs� Parallel Computing�
Vol� �� pp� 	
���	
 �	
����

�	�� D� Takahashi� Parallel FFT Algorithms for the Distributed�Memory
Parallel Computer Hitachi SR�


� Proc� of JSPP����� pp� 
	�
��
�


 �in Japanese��

�	�� C� Van Loan� Computational Frameworks for the Fast Fourier
Transform� SIAM Press� Philadelphia� PA �	

���

�	�� Y� Yamamoto� M� Igai and K� Naono� A Vector�Parallel FFT with
a User�Speci�able Data Distribution Scheme� in M� Guo and L� T�
Yang� eds�� Parallel and Distributed Processing and Applications�
Lecture Notes in Computer Science ����� Springer�Verlag� pp� ����
���� �

��

�	�� Y� Yasuda� H� Fujii� H� Akashi� Y� Inagami� T� Tanaka� J� Nak�
agoshi� H� Wada and T� Sumimoto� Deadlock�Free Fault�Tolerant
Routing in the Multi�Dimensional Crossbar Network and its Imple�
mentation for the Hitachi SR��
	� Proc� of IPPS ���� pp� ��������
	

��


