
Performance Modeling and Optimal Block Size

Selection for the Small�Bulge Multishift QR

Algorithm

Yusaku Yamamoto

Nagoya University� Nagoya� Aichi� ��������� Japan�

yamamoto�na�cse�nagoya�u�ac�jp�

WWW home page� http���www�na�cse�nagoya�u�ac�jp��yamamoto

Abstract� The small�bulge multishift QR algorithm proposed by Bra�

man� Byers and Mathias is one of the most e�cient algorithms for com�

puting the eigenvalues of nonsymmetric matrices on processors with hi�

erarchical memory	 However� to fully extract its potential performance�

it is crucial to choose the block size m properly according to the target

architecture and the matrix size n	 In this paper� we construct a perfor�

mance model for this algorithm	 The model has a hierarchical structure

that re
ects the structure of the original algorithm and given n� m and

the performance data of the basic components of the algorithm� such

as the level�� BLAS routines and the double implicit shift QR routine�

predicts the total execution time	 Experiments on SMP machines with

PowerPC G� and Opteron processors show that the variation of the ex�

ecution time as a function of m predicted by the model agrees well with

the measurements	 Thus our model can be used to automatically select

the optimal value of m for a given matrix size on a given architecture	

� Introduction

The QR algorithm ��������� is widely used as an e�cient and reliable method to
compute the eigenvalues of small to medium nonsymmetric matrices� However�
it is not straightforward to implement the QR algorithm in a way that fully ex�
ploits the performance of modern computers such as the shared�memory parallel
machines and processors with hierarchical memory� In fact� when applying the
conventional double implicit shift QR algorithm to an n�n Hessenberg matrix�
the parallel granularity is only O	n
� This is often too small to attain reason�
able speedup in the presence of large inter�processor synchronization costs� In
addition� the algorithm sweeps the whole matrix in each QR iteration� while per�
forming only O	�
 arithmetic operations on each matrix element� This results in
poor data reference locality and prevents e�ective use of cache memory�

Many e�orts have been made to overcome these di�culties so far ������������������
Among them� the small�bulge multishift QR algorithm proposed by Braman� By�
ers and Mathias �� seems the most promising approach� Their algorithm com�
putes m shifts at once as the eigenvalues of the m�m trailing principal subma�
trix� as in the conventional multishift QR algorithm ���� and performs so�called

�

bulge chasing �������� using these m shifts simultaneously� However� instead of
chasing one large bulge containing them shifts� their algorithm chasesm�� small
bulges each containing only � shifts simultaneously in a pipelined fashion� This
removes the defects of conventional multishift QR algorithm � numerical insta�
bility due to the use of large bulge and the resulting deterioration of convergence
speed �	����� � and recovers the excellent convergence property of the original
double shift QR algorithm� Since the parallel granularity and the number of
operations per iteration and per matrix element are increased to O
m�n� and
O
m�� respectively� as a result of using m shifts� this algorithm is ideally suited
for modern architectures� It has been reported that this algorithm can achieve up
to three times speedup over DHSEQR� the large�bulge multishift QR algorithm
in LAPACK ����� on the Origin���� ���

To fully extract the potential performance of the small�bulge multishift QR
algorithm� it is crucial to choose the block size m properly� Larger m will pro�
vide larger parallel granularity and more chance for data reuse� but the cost of
computing the shifts grows with m� The optimal value of m varies depending on
the target machine� the number of processors and the matrix size n� In principle�
the optimal value of m can be determined by trial and error� but this process
will require huge time�

In this paper� we present a performance model for the small�bulge multishift
QR algorithm� It is based on the hierarchical approach proposed by Dacklund
���� and Cuenca et al� �����	�� and given the execution time models of each com�
ponent of the algorithm� such as the level�� BLAS routines and the conventional
double shift QR algorithm to compute the shifts� predicts the total execution
time accurately� Using this performance model� the optimal block size for a given
architecture� the number of processors and matrix size can be determined prior
to execution�

There are many studies on automatic optimization of linear algebra pro�
grams� Katagiri et al� ���� propose I�LIB� an automatically tuned linear algebra
library for distributed�memory parallel machines� They report the result of op�
timizing parameters for tridiagonalization of symmetric matrices and show that
considerable performance gains can be obtained through optimization� However�
to �nd the optimal set of parameters� I�LIB measures the execution time of the
whole program repeatedly with di�erent values of parameters� Hence the cost of
tuning is very high�

The hierarchical approach to performance modeling was �rst proposed by
Dackland ���� and Cuenca �����	�� The basic idea of this approach is to exploit
the natural hierarchy existing in linear algebra programs� In this approach� the
execution time models of lower�level routines such as the BLAS are constructed
�rst� and the total execution time is estimated by accumulating the execution
times of the lower�level routines� This approach has been applied to performance
modeling and optimization of LU decomposition ���� QR decomposition �����
tridiagonalization of symmetric matrices ���� and so on and has proved useful in
reducing the cost of tuning without sacri�cing accuracy� Our work is along this
line of research�

�

Automatic optimization of linear algebra programs are studied both at a
higher and a lower level� For example� the Self�Adapting Numerical Software

SANS� proposed by Dongarra et al� ���� aims at automatically selecting the
best routine
not parameters within a routine� to solve a given problem� On the
other hand� there are projects like ATLAS ���� and PhiPAC ����� which try to
maximize the performance of basic routines such as BLAS by automatic tuning�
These studies deal with problems that are at di�erent levels from ours and are
therefore complementary with our work�

This paper is structured as follows� in section �� we give a brief explanation
of the small�bulge multishift QR algorithm� Section � gives the details of our
performance model� Experimental results that demonstrate the e�ectiveness of
our model are presented in section �� Finally� section gives some concluding
remarks�

� The small�bulge multishift QR algorithm

��� The algorithm

Let us consider the application of the QR algorithm on an n � n Hessenberg
matrix A and denote the matrix after the l�th QR iteration by Al� In the con�
ventional double implicit shift QR algorithm� to compute Al�� from Al� we �rst
compute the two shifts �� and �� as the eigenvalues of the trailing principal
submatrix of Al� introduce a �� � bulge containing the information of the shifts
at the top left corner of Al and then chase the bulge along the diagonal by
repeatedly applying Householder transformations until it disappears from the
bottom right corner� Then the implicit Q theorem �������� guarantees that the
resulting matrix is the one that would be obtained by applying two explicit QR
steps with shifts �� and �� to Al�

This idea can be naturally extended to the multishift QR algorithm ���� In
this case� we compute m shifts ��� ��� � � � � �m as the eigenvalues of the trailing
principal submatrix of Al� introduce a large
m� ���
m� �� bulge containing
their information and then perform bulge chasing� By using a large bulge� both
parallel granularity and data reference locality of the bulge�chasing step can be
increased� The LAPACK routine DHSEQR is based on this idea� Unfortunately�
it has been shown that as the size of the bulge increases� the shift information
contained in the bulge becomes extremely prone to being contaminated by nu�
merical errors ����� This prevents the accurate shift information to be conveyed
to the bottom right corner of the matrix and thereby retards convergence �����
Thus the value of m is usually limited to about ten� but this is too few to use
cache memory e�ciently�

To overcome this di�culty� Braman� Byers and Mathias propose the small�
bulge mltishift QR algorithm ��� In this algorithm� the m shifts are divided
into m�� sets of double shifts and in the bulge�chasing process� m�� small �� �
bulges are chased simultaneously in a pipelined fashion� Although this algorithm
is mathematically equivalent to the large�bulge multishift QR algorithm� it can

�

avoid numerical di�culties associated with the use of large bulge and recover the
excellent convergence properties of the conventional double shift QR algorithm�

The bulge chasing in the small�bulge multishift QR algorithm can be divided
into three phases� In phase I� a chain of m�� bulges is introduced at the top
left corner of the matrix� Since bulges have to be at least three rows apart to
avoid interference� the bulges occupy rows � through �m�� � � when the phase
I is completed �Fig� �	� Note that to chase the bulges in phase I� only the
rst
��m����	���m����	 submatrix of Al� which we denote by Al����m��������m����

following ����� is necessary� We therefore divide the work in phase I into two steps
�see Fig� �	

�a	 Chase the bulges along the diagonal by applying a sequence of Householder
re�ections from both sides to Al����m��������m����� At the same time� form
the product of these re�ections as an ��m�� � �	� ��m�� � �	 matrix U �

�b	 Update the rest of rows � through �m���� by multiplyingAl����m������m�����n

by U from the left�

0

Fig� �� The matrix after the completion of phase I �m � ��� Four bulges have been
introduced in rows � through ���	�
����

0

: modified in step (a)

: modified in step (b)

: not modified in phase I

Fig� �� Division of the work in phase I into two parts� �a� bulgechasing in the diagonal
block and �b� update of the o�diagonal block�

Of these two steps� step �b	 can be done entirely with the level�� BLAS� or
matrix multiplication� and the copy operation needed to move the results back

�

into Al����m������m�����n� Though step �a	 cannot be performed with the level��
BLAS� the computational work needed for this step is much smaller than that
for step �b	 when m� n� Thus most of the work in phase I can be organized as
level�� BLAS�

In phase III� the m�� bulges that lie on the last �m�� � � rows of Al are
chased out of the matrix� As in phase I� the work can be divided into two steps�
namely� �a	 bulge�chasing within the trailing ��m�� � �	� ��m�� � �	 diagonal
block and accumulation of the Householder re�ectors� and �b	 update of the o��
diagonal block of the last �m�� � � columns� Again� step �b	 accounts for most
of the computational work and can be done with the level�� BLAS�

In phase II� the m�� bulges that lie on the
rst �m��� � rows of the matrix
are chased to the last �m�� � � rows along the diagonal� In this phase� we set
some integer k and regard the operation of chasing all the bulges by k rows as one
block operation �Fig� �	� Since the sequence of the bulges occupies �m���� rows
and columns� this block operation involves �m�� � k rows and columns� Then
we divide the work in this block operation into three steps� that is� �a	 bulge�
chasing within the ��m��� k	� ��m��� k	 diagonal block and accumulation of
the re�ectors� �b	 update of the o��diagonal block of the �m��� k rows and �c	
update of the o��diagonal block of the �m�� � k columns� Again� steps �b	 and
�c	 account for most of the work and they can be done with the level�� BLAS�
Braman et al� ��� shows that k � �

�
m is the best to minimize the computational

work of phase II�

0

k rows

: modified in step (a)

: modified in step (b)

: modified in step (c)

: not modified in this block operation

Fig� �� Work in one block operation of phase II� The work is divided into �a� bulge
chasing in the diagonal block� �b� update of the o�diagonal rows and �c� update of
the o�diagonal columns�

In addition to the work in phases I to III described above� there is work for
computing the shifts� Also� when the matrix Al becomes su�ciently small as a
result of de�ation� its eigenvalues are computed with the conventional double
implicit shift QR algorithm� However� the computational work associated with
them are much smaller than the work in phases I to III when m� n� Thus the
small�bulge multishift QR algorithm can perform most of the work in the form
of level�� BLAS and exploit the potential performance of modern architectures�
Numerical experiments on various test matrices show that it can attain up to
three times speedup over DHSEQR on the Origin���� ����

�

��� Basic computational routines used in the algorithm

As is clear from the previous subsection� the small�bulge multishift QR algorithm
consists of four types of basic computational routines as follows�

�A� Routines for chasing the bulges within the diagonal block� We denote the
routines for phases I� II and III by BCHASE�� BCHASE� and BCHASE��
respectively�

�B� level�� BLAS routines for updating the o	�diagonal block of the rows or
columns� We can use DGEMM with TRANSA
TRANSB
�N� for row up�
dates and DGEMM with TRANSA
�N� and TRANSB
�T� for column up�
dates�

�C� Two copy routines which we denote as COPY� and COPY�� The former is
used to copy the result of row updates back into the matrix� while the latter
is used to copy the result of column updates back into the matrix�

�D� A Double implicit shift QR routine for computing the shifts or computing
the eiegnvalues of Al when Al is su�ciently small� We use EISPACK routine
HQR for this purpose�

In the hierarchical performance modeling to be explained in the next section� we
use these routines as basic components�

��� The optimal block size

The attain high performance with the small�bulge multishift QR algorithm� it
is critical to choose the optimal block size m� In general� as m becomes larger�
the performance of the level�� BLAS will increase because both the parallel
granularity and the chance for data reuse increase� On the other hand� the cost
of computing the shifts and the work of BCHASE� to � relative to the total
work will also grow with m� The optimal value of m is determined from these
trade�o	s and di	ers considerably depending on the architecture� the number of
processors and the matrix size n� In fact� to obtain the best performance on the
Origin�� Braman et al� use m
 � when � � n � ����� m
 ��� when
� � n � ���� and m
 �� when �� � n � ���� ���� Our objective is
to determine the optimal value of m for a given environment and problem size
prior to execution using a performance prediction model�

� Performance modeling

��� The hierarchical approach

To construct a performance model of the small�bulge multishift QR algorithm�
we adopt the hierarchical modeling approach ������������� In this approach� we
�rst construct execution time models for the basic components of the algorithm
such as the level�� BLAS routines and the double implicit shift QR routine
based on the measurement of actual execution times� Then� the time consumed

�

by each call to these subroutines in the algorithm is estimated using the model
and the input parameters� Finally� the execution time of the whole algorithm is
predicted by accumulating these partial execution times� This methodology has
been applied to the performance modeling of LU and QR decompositions and
a BLAS�� based tridiagonalizaion algorithm and has proved to give satisfactory
results both in terms of accuracy and cost of prediction�

��� Modeling the performance of basic computational routines

From what we have stated in subsection ���� we need to construct execution
time models for eight computational routines� namely� BCHASE�� BCHASE��
BCHASE�� DGEMM��N���N��� DGEMM��N���T��� COPY�� COPY� and HQR�
Here we take up the case of BCHASE� to illustrate the process of modeling� This
routine is used to chase the bulges within the diagonal block in phase II and has
two input parameters m and k that determine the execution time� Our aim is
to model the execution time of this routine as a function fBCHASE��m� k� of m
and k� Note that the two�parameter model is necessary even when k is 	xed�
This is because the number of rows by which the bulges are chased in phase II
is in general not a multiple of k and the remainder part must be processed by
BCHASE� with a smaller value of k�

To construct a model� we 	rst measure the performance of BCHASE� on
grid points in the �m� k� plane� More speci	cally� we vary m from �
 to ��
 with
intervals of �
 and set k to one of the 	ve values� ��m� ��m� ��m� ��m and m� Then
we approximate the execution time for a 	xed value of k as a cubic function of
m�

fBCHASE��m� k� f
�k�
BCHASE��m� a

�k�
� m� � a

�k�
� m� � a

�k�
� m� a

�k�
� � ���

The coe�cients a
�k�
� � a

�k�
� � a

�k�
� and a

�k�
� are determined by the least squares from

the measured data� To obtain the value of fBCHASE��m� k� for k between the
grid points� we compute the function values at the two adjacent grid points and
use linear interpolation� It would be possible to use polynomial approximation
also with respect to k� but we chose to use linear interpolation because it is more
�exible and can approximate the function well even when it exhibits somewhat
irregular behavior due to cache miss�

The performance modeling of other routines can be done in much the same
way� In fact� COPY� and COPY� also have two parameters that a�ect the
execution time� DGEMM��N���N�� and DGEMM��N���T�� also have only two pa�
rameters since in our algorithm� the multiplier U is a square matrix� BCHASE��
BCHASE� and HQR have only one parameter and therefore their performance
modeling is easier�

��� Modeling the performance of the whole algorithm

Once execution time models of the basic computational routines have been con�
structed� we can use them to predict the execution time of the small�bulge multi�
shift QR algorithm� The conventional approach to this is to derive an analytical

�

expression for the total computational work executed by each routine and then
calculate the time consumed by each routine using the corresponding perfor�
mance models� However� it is di�cult to obtain accurate results with this ap�
proach because the relation between the execution time and the computational
work is usually far from linear�

We therefore take an alternative approach� We �rst write functions named
BCHASE� TIME� DGEMM TIME� COPY� TIME� HQR TIME and so on� These
functions have the same input parameters as BCHASE�� DGEMM� COPY� and
HQR� respectively� but instead of doing actual computation� estimate the ex�
ecution time for given input parameters using the performance model for the
corresponding routine and return it� Next we rewrite the main program of the
small�bulge multishift QR algorithm so that the calls to the computational rou�
tines are replaced with the calls to the corresponding time estimation routines
and the estimated execution times are accumulated� Then� by executing the
rewritten program� we can obtain estimated execution time of the small�bulge
multishift QR algorithm for a given value of n and m� This approach has been
successfully applied to the performance modeling of a BLAS�� based tridiag�
onalization algorithm� ���	 reports that it can predict the execution time of
this algorithm for various matrix sizes and block sizes on di
erent architectures
within errors of � to ���

Since the QR method is an iterative method� we have to address one prob�
lem that does not exist in the case of the tridiagonalization algorithm� We have
to specify how many times the main loop is executed before convergence and
in what manner the de�ations occur� Kressner ���	 observes that in average�
de�ation occurs after every four multishift sweeps and at each de�ation� ap�
proximately m�m trailing submatrix is isolated� We con�rmed this observation
through our experiments on various matrices and adopt it as a model of conver�
gence behavior in our performance estimation program�

Our performance model takes fully into account the nonlinearity between
the execution time and computational work of the basic computational routines�
Thus it is expected to predict the total execution time accurately� except for
the variation due to variation in the number of iteration� The cost of predic�
tion is proportional to the number of calls to the basic computational routines
in the algorithm and is O�n��m��� This is negligible compared with the com�
putational work needed for actual execution of the algorithm� which is O�n���
Note also that our performance model can be applied to shared�memory parallel
programs without di�culty as long as parallelization is done within the basic
computational routines�

� Experimental results

��� Computational environments

To evaluate the e
ectiveness of our performance model� we performed exper�
iments on two platforms� namely� a �way SMP machine with ���GHz Pow�
erPC G� processors and a �way SMP machine with ���GHz Opteron processors�

�

For the G� machine� we used IBM XL Fortran with options �O� �qsmp�omp
�qarch�ppc��� �qtune�ppc��� and the GOTO BLAS� For the Opteron ma�
chine� we used GNU f�� compiler with option �O� and the GOTO BLAS� The
routines BCHASE�� BCHASE�� BCHASE�� COPY� and COPY� were written
from scratch and the EISPACK routine HQR is used for computing the shifts
and for computing the eigenvalues of the matrix when it becomes su�ciently
small� Parallelization is done only within the GOTO BLAS�

��� Performance prediction

To construct the performance model� we �rst measured the execution times of
the basic computational routines on both machines for various values of input
parameters� For BCHASE�� BCHASE�� BCHASE� and HQR� we varied m from
�� to ��� with intervals of ��� Performance measurement of BCHASE� was done
as described in subsection ���� For DGEMM��N���N�� and DGEMM��N���T��� the
size of the square multiplier matrix was varied from �� to ��� with intervals of
��� while the number of columns in the multiplicand matrix was varied from
��� to ���� with intervals of ���� The execution times of all the routines except
for DGEMM were measured on � processor� The execution times of DGEMM
were measured on � and � processors �in the case of PowerPC G�� or on �
and � processors �in the case of Opteron�� Based on these measurements� we
built an execution time model for each routine on each platform following the
prescription of subsection ����

Next we constructed a performance model for the small�bulge multishift QR
algorithm following the methodology stated in subsection ��� and compared the
predicted execution time with the actual execution time� We varied the matrix
size m from ���� to ���� and varied the number of shifts m from �� to ���� The
value of k was set equal to m� As test matrices� we generated random matrices
whose elements follow the uniform distribution in ���� �	 and transformed them
to Hessenberg by Householder transformation�

The results on the PowerPC G� are shown in Table � and Fig� � for the ��
processor case and in Table � and Fig� � for the ��processor case� It is clear that
the model generally overestimate the actual execution time� This is because the
test matrices used here require smaller number of iterations than we assumed
in subsection ���� In fact� the average number of multishift QR sweeps needed
to isolate an �approximately� m � m small submatrix was between � and ��
However� when we turn our attention to the relative execution time� de�ned as
the ratio of the execution time to the shortest execution time over all m� we see
that the model reproduces the behavior of the actual execution time fairly well
�See Figs� � and ��� This is su�cient for determining the optimal value of m�

We also show the results on the �way Opteron SMP machine in Table � and
Fig� �� In this case� again� the model generally overestimates the execution time�
but predicts the relative execution time as a function of m fairly well�

��

Table �� Actual �above� and predicted �below� execution times �in sec�� of the small�
bulge multishift QR algorithm �PowerPC G�� �CPU��

n m � 	� m �
� m � �� m � ���

���� ��� ���� ����
���
��
���
��� ���

���� ����� 		��� 	��	 	����
�	��� ����	 	���� �
���

���� 	�
�� �
��
� �	
��� �
����
	�	�
 ��
� �
���� ��
�

��� 	��	��� ���
��
 ������� �����	�
	����
� ������ ��
���
 ���
�	�

Table �� Actual �above� and predicted �below� execution times �in sec�� of the small�
bulge multishift QR algorithm �PowerPC G�� �CPU��

n m � 	� m �
� m � �� m � ���

���� ���� 	��� ����
���
���
 ��� ���� ����

���� 		�		 ����� ����� �����
���
 	��	� 	���
 	��
�

���� ������ ������ ��
��	 ����	
	���	� ���� ������ ������

��� ����	
 ������ �
�
�
 ������
�	����� ������� �	���� ��
	�

��� Optimal block size selection

As can be seen clearly from Figs� � through �� the value of m that gives the

shortest execution time varies considerably depending on the matrix size and

the architecture� Generally speaking� the optimal value of m increases with the

matrix size� Also� the optimal value di�ers widely with the matrix size in the

case of the �way Opteron machine� while it is rather insensitive in the case of

G�� Figs� � through � show that these tendencies are represented by our model

well� In fact� our model succeeds in predicting the optimal value of m in � cases

of the total �� cases presented here� Even when it fails to predict the correct

m� it can be seen that the execution time using predicted m di�ers only slightly

from the shortest execution time� In addition� the time needed to predict the

execution time for all value of m for given n is less than a fraction of a second�

Thus we can conclude that our model can be used e�ectively for choosing the

optimal block size in the small	bulge multishift QR algorithm�

��

Matrix size

Relative execution time

m=30

Relative execution time

Matrix size

m=60
m=90
m=120

1000 2000 4000 8000
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1000 2000 4000 8000

Fig� �� Actual �left� and predicted �right� relative execution times of the small�bulge
multishift QR algorithm �PowerPC G�� �CPU��

Matrix size

Relative execution time

m=30

Relative execution time

Matrix size

m=60
m=90
m=120

1000 2000 4000 8000
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

1.8

1000 2000 4000 8000

1.6

Fig� �� Actual �left� and predicted �right� relative execution times of the small�bulge
multishift QR algorithm �PowerPC G�� �CPU��

� Conclsion

In this paper� we construct a performance model for the small	bulge multishift

QR algorithm proposed by Braman� Byers and Mathias� Our model has a hierar	

chical structure that naturally arises from the structure of the original algorithm

and given the matrix size n� the number of simultaneous shifts m and the perfor	

mance data of the basic components of the algorithm� such as the level	
 BLAS

routines and the double implicit shift QR routine� predicts the total execution

time� Experiments on SMP machines based on PowerPC G� and Opteron pro	

cessors show that the variation of the execution time as a function ofm predicted

by the model agrees well with the measurements� Thus our model can be used

to automatically select the optimal value of m for a given matrix size on a given

architecture�

��

Table �� Actual �above� and predicted �below� execution times �in sec�� of the small�
bulge multishift QR algorithm �Opteron� �CPU��

n m � 	
 m � �
 m � �
 m � ��

�

 	�� 	��
 ��	� ��
���� ��	� �
� ��

�

 ���	� �
��� ����� �����
���	� ���	� ����� ����

�

 ����	� ������ ������ �����
��
��� ���
 ���� ������

�

 ������ �
����� �
����	 �
�����
�����		 ������ �
����� �
���	�

Matrix size

Relative execution time

m=30

Relative execution time

Matrix size

m=60
m=90
m=120

1000 2000 4000 8000
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1000 2000 4000 8000

Fig� �� Actual �left� and predicted �right� relative execution times of the small�bulge
multishift QR algorithm �Opteron� �CPU��

Future works include extension of this model to a more e�cient parallel

implementation of the small�bulge multishift QR algorithm� where the bulge

chasing in the diagonal block is overlapped with the update of the o��diagonal

blocks� In this case� the number of parameters to optimize will increase and we

will need an e�cient search algorithm that can �nd near�optimal parameters

without an exhaustive search of all possible candidates� As another direction of

research� we are planning to extend the modeling methodology used in this work

to distributed�memory parallel programs�

Acknowledgements

I would like to thank Professor Reiji Suda� Professor Takahiro Katagiri� Pro�

fessor Toshitsugu Yuba� Professor Toshiyuki Imamura� Dr� Ken Naono and

other members of the Auto�Tuning Study Group for fruitful discussion� This

work is partially supported by the Ministry of Education� Science� Sports and

��

Culture� Grant in Aid for Scienti�c Research on Priority Areas� �i�explosion�
�No� ���	
��	�� Grant�in�aid for Scienti�c Research �C��No� �������� and
Grant�in�Aid for the ��st Century COE �Frontiers of Computational Science��

References

�� Francis� J�G�F�� The QR transformation� a unitary analogue to the LR transfor�
mation� I� Comput� J� � �����	���
�
��
��

� Francis� J�G�F�� The QR transformation� II� Comput� J� � �����	���
� ��
���

�� Kublanovskaya� V�N�� On some algorithms for the solution of the complete eigen�
value problem� U�S�S�R� Comput� Math� and Math� Phys� � ������ ������

�� Bai� Z�� Demmel� J�� On a block implementation of Hessenberg QR iteration� Int�
J� of High Speed Computing � ������ ����

�� Braman� K�� Byers� R�� Mathias� R�� The multishift QR algorithm� part I� Maintain�
ing well�focused shifts and level � performance� SIAM Journal on Matrix Analysis
and Applications �� �
��
� �
����

�� Dubrulle� A�� The multishift QR algorithm� Is it worth the trouble� Palo Alto
Scienti�c Center Report G�
������x� IBM Corp� ������

�� Henry� G�� Watkins� D�S�� Dongarra� J�� A parallel implementation of the nonsym�
metric QR algorithm for distributed memory architectures� SIAM J� Sci� Comput�
�� �
��
�
�����

�� Watkins� D�S�� Bidirectional chasing algorithms for the eigenvalue problem� SIAM
J� Matrix Anal� Appl� �� ������ ������

�� Watkins� D�S�� Shifting strategies for the parallel QR algorithm� SIAM J� Sci�
Comput� �� ������ ������

��� Demmel� J�W�� Applied Numerical Linear Algebra� SIAM ������

��� Golub� G�H�� van Loan� C�F�� Matrix Computations� Third edn� Johns Hopkins
University Press ������

�
� Watkins� D�S�� The transmission of shifts and shift blurring in the QR algorithm�
Linear Algebra and Its Applications ������� ������ ������

��� Anderson� E�� Bai� Z�� Bischof� C�� Demmel� J�� Dongarra� J�� Croz� J�D�� Green�
baum� A�� Hammarling� S�� McKenney� A�� Ostrouchov� S�� Sorensen� D�� LAPACK
User�s Guide� SIAM ����
�

��� Dackland� K�� K�agstr�om� B�� A hierarchical approach for performance analysis of
ScaLAPACK�based routines using the distributed linear algebra machine� In� Pro�
ceedings of Workshop on Applied Parallel Computing in Industrial Computation
and Optimization �PARA���� Number ���� in Lecture Notes in Computer Science�
Springer�Verlag ������ ������

��� Cuenca� J�� Gimenez� D�� Gonzalez� J�� Architecture of an automatically tuned
linear algebra library� Parallel Computing �� �
���� ���
��

��� Cuenca� J�� Garcia� L�P�� Gimenez� D�G�� Empirical modelling of parallel linear
algebra routines� In� Proceedings of the �th International Conference on Parallel
Processing and Applied Mathematics �PPAM
����� Number ���� in Lecture Notes
in Computer Science� Springer�Verlag �
���� ������

��� Katagiri� T�� Kuroda� H�� Kanada� Y�� A methodology for automatically tuned
parallel tri�diagonalization on distributed memory parallel machines� In� Proceed�
ings of VecPar
���� Faculdade de Engenharia da Universidade do Porto� Portugal
�
����
��
��

��

��� Yamamoto� Y�� Performance modeling and optimal block size selection for a BLAS�
� based tridiagonalization algorithm� In� Proceedings of HPC�Asia
���� Beijing
�
����
��
��

��� Dongarra� J�� Eijkhout� V�� Self�adapting numerical software for next generation
applications� International Journal of High Performance Computing Applications
�� �
���� �
����

�� Whaley� R�� Petitet� A�� Dongarra� J�� Automated empirical optimizations of soft�
ware and the ATLAS project� Parallel Computing �� �
���� ���

�� Bilmes� J�� Asanovic� K�� Chin� C�W�� Demmel� J�� Optimizing matrix multiply us�
ing PhiPAC� a portable� high�performance� ANSI�C coding methodology� In� Pro�
ceedings of the ��th International Conference on Supercomputing� Vienna ������
������

� Kressner� D�� Numerical Methods for General and Structured Eigenvalue Problems�
Springer�Verlag �
����

